论弗里斯的技术

IF 0.5 2区 数学 Q3 MATHEMATICS
P. Aglianó, S. Bartali, S. Fioravanti
{"title":"论弗里斯的技术","authors":"P. Aglianó, S. Bartali, S. Fioravanti","doi":"10.1142/S0218196723500601","DOIUrl":null,"url":null,"abstract":"In this paper we explore some applications of a certain technique (that we call the Freese's technique), which is a tool for identifying certain lattices as sublattices of the congruence lattice of a given algebra. In particular we will give sufficient conditions for two family of lattices (called the rods and the snakes) to be admissible as sublattices of a variety generated by a given algebra, extending an unpublished result of R. Freese and P. Lipparini.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On freese's technique\",\"authors\":\"P. Aglianó, S. Bartali, S. Fioravanti\",\"doi\":\"10.1142/S0218196723500601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore some applications of a certain technique (that we call the Freese's technique), which is a tool for identifying certain lattices as sublattices of the congruence lattice of a given algebra. In particular we will give sufficient conditions for two family of lattices (called the rods and the snakes) to be admissible as sublattices of a variety generated by a given algebra, extending an unpublished result of R. Freese and P. Lipparini.\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196723500601\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0218196723500601","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们探索了某种技术(我们称之为Freese技术)的一些应用,它是一种将某些格识别为给定代数的同余格的子格的工具。特别地,我们将给出两个格族(称为杆和蛇)被允许作为由给定代数生成的变种的子格的充分条件,扩展了R.Freese和P.Lipparini的未发表的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On freese's technique
In this paper we explore some applications of a certain technique (that we call the Freese's technique), which is a tool for identifying certain lattices as sublattices of the congruence lattice of a given algebra. In particular we will give sufficient conditions for two family of lattices (called the rods and the snakes) to be admissible as sublattices of a variety generated by a given algebra, extending an unpublished result of R. Freese and P. Lipparini.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信