人NT2多能干细胞衍生神经元的化学缺氧:异羟肟酸和苯甲酰胺类表观遗传学药物的作用

Q4 Neuroscience
R. Bagchi, A. Bagchi, Ankita Salunke, D. Hens, Pragna Parikh
{"title":"人NT2多能干细胞衍生神经元的化学缺氧:异羟肟酸和苯甲酰胺类表观遗传学药物的作用","authors":"R. Bagchi, A. Bagchi, Ankita Salunke, D. Hens, Pragna Parikh","doi":"10.31117/NEUROSCIRN.V2I3.30","DOIUrl":null,"url":null,"abstract":"Hypoxia-induced oxidative stress contributes to neuronal damage leading to many neurodegenerative disorders. Hypoxia promotes many downstream effectors such as hypoxia-inducible factor-1α (HIF-1α) in order to restore respiratory homeostasis due to low oxygen availability and increased ROS. Use of histone deacetylase (HDAC) inhibitors may modulate hypoxia-induced neuronal cell damage.  In this study, we used two chemically diverse HDAC inhibitors to investigate their effect on hypoxia-exposed neuronal cells. Human pluripotent NT-2 stem cell-derived neuronal differentiated cells were exposed to CoCl2 pre-treatment for 6h to induce hypoxia, prior to supplementation of HDAC inhibitor (SAHA or MGCD0103). Treatment with HDAC inhibitor improved cell viability in hypoxia-induced neuronal cells. The increased HIF1α expression in hypoxia-induced neuronal cells was blunted by these HDAC inhibitors with a concomitant decrease in ROS production. CoCl2 treatment caused an increase in IL-1β, which was significantly inhibited by these HDAC inhibitors. Furthermore, apoptosis induced in these CoCl2 treated neuronal cells was mitigated by SAHA as well MGCD0103 suggesting that these HDAC inhibitors are capable of reducing cellular toxicity, inflammation and apoptosis, and thus, could be beneficial as therapeutic molecules for many neuropathological conditions.","PeriodicalId":36108,"journal":{"name":"Neuroscience Research Notes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical hypoxia in human pluripotent NT2 stem cell-derived neurons: Effect of hydroxamic acid and benzamide-based epigenetic drugs\",\"authors\":\"R. Bagchi, A. Bagchi, Ankita Salunke, D. Hens, Pragna Parikh\",\"doi\":\"10.31117/NEUROSCIRN.V2I3.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypoxia-induced oxidative stress contributes to neuronal damage leading to many neurodegenerative disorders. Hypoxia promotes many downstream effectors such as hypoxia-inducible factor-1α (HIF-1α) in order to restore respiratory homeostasis due to low oxygen availability and increased ROS. Use of histone deacetylase (HDAC) inhibitors may modulate hypoxia-induced neuronal cell damage.  In this study, we used two chemically diverse HDAC inhibitors to investigate their effect on hypoxia-exposed neuronal cells. Human pluripotent NT-2 stem cell-derived neuronal differentiated cells were exposed to CoCl2 pre-treatment for 6h to induce hypoxia, prior to supplementation of HDAC inhibitor (SAHA or MGCD0103). Treatment with HDAC inhibitor improved cell viability in hypoxia-induced neuronal cells. The increased HIF1α expression in hypoxia-induced neuronal cells was blunted by these HDAC inhibitors with a concomitant decrease in ROS production. CoCl2 treatment caused an increase in IL-1β, which was significantly inhibited by these HDAC inhibitors. Furthermore, apoptosis induced in these CoCl2 treated neuronal cells was mitigated by SAHA as well MGCD0103 suggesting that these HDAC inhibitors are capable of reducing cellular toxicity, inflammation and apoptosis, and thus, could be beneficial as therapeutic molecules for many neuropathological conditions.\",\"PeriodicalId\":36108,\"journal\":{\"name\":\"Neuroscience Research Notes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31117/NEUROSCIRN.V2I3.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31117/NEUROSCIRN.V2I3.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

缺氧诱导的氧化应激导致神经元损伤,导致许多神经退行性疾病。缺氧促进许多下游效应物,如缺氧诱导因子-1α(HIF-1α),以恢复由于低氧可用性和ROS增加而引起的呼吸稳态。组蛋白去乙酰化酶(HDAC)抑制剂的使用可能调节缺氧诱导的神经元细胞损伤。在这项研究中,我们使用了两种不同化学性质的HDAC抑制剂来研究它们对缺氧暴露的神经元细胞的影响。在补充HDAC抑制剂(SAHA或MGCD0103)之前,将人多能干细胞NT-2衍生的神经元分化细胞暴露于CoCl2预处理6小时以诱导缺氧。用HDAC抑制剂处理改善了缺氧诱导的神经元细胞中的细胞活力。缺氧诱导的神经元细胞中HIF1α表达的增加被这些HDAC抑制剂钝化,同时ROS产生减少。CoCl2处理引起IL-1β的增加,这些HDAC抑制剂显著抑制了IL-1β。此外,SAHA和MGCD0103减轻了在这些CoCl2处理的神经元细胞中诱导的细胞凋亡,这表明这些HDAC抑制剂能够减少细胞毒性、炎症和细胞凋亡,因此,作为许多神经病理学病症的治疗分子可能是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical hypoxia in human pluripotent NT2 stem cell-derived neurons: Effect of hydroxamic acid and benzamide-based epigenetic drugs
Hypoxia-induced oxidative stress contributes to neuronal damage leading to many neurodegenerative disorders. Hypoxia promotes many downstream effectors such as hypoxia-inducible factor-1α (HIF-1α) in order to restore respiratory homeostasis due to low oxygen availability and increased ROS. Use of histone deacetylase (HDAC) inhibitors may modulate hypoxia-induced neuronal cell damage.  In this study, we used two chemically diverse HDAC inhibitors to investigate their effect on hypoxia-exposed neuronal cells. Human pluripotent NT-2 stem cell-derived neuronal differentiated cells were exposed to CoCl2 pre-treatment for 6h to induce hypoxia, prior to supplementation of HDAC inhibitor (SAHA or MGCD0103). Treatment with HDAC inhibitor improved cell viability in hypoxia-induced neuronal cells. The increased HIF1α expression in hypoxia-induced neuronal cells was blunted by these HDAC inhibitors with a concomitant decrease in ROS production. CoCl2 treatment caused an increase in IL-1β, which was significantly inhibited by these HDAC inhibitors. Furthermore, apoptosis induced in these CoCl2 treated neuronal cells was mitigated by SAHA as well MGCD0103 suggesting that these HDAC inhibitors are capable of reducing cellular toxicity, inflammation and apoptosis, and thus, could be beneficial as therapeutic molecules for many neuropathological conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience Research Notes
Neuroscience Research Notes Neuroscience-Neurology
CiteScore
1.00
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信