{"title":"Mn(III)催化CO2在碳电极上的电化学还原","authors":"Khalaf M. Alenezi","doi":"10.5562/cca3614","DOIUrl":null,"url":null,"abstract":"Though challenging, conversion of carbon dioxide (CO2) to valuable products is an emerging area of research. Electrochemical reduction (ECR) has emerged as an efficient and rapid technique to achieve this goal. Herein, 5,10,15,20-tetraphenyl-21H, 23H-porphine manganese(III) chloride [(Mn(TPP)Cl)] catalyzed CO2 reduction at vitreous carbon electrode in acetonitrile electrolyte is reported. The effect of catalyst concentration, addition of Brönsted acid (CF3CH2OH) to CO2-saturated solution have been studied and reported. Based on the results, possible mechanistic pathways have also been suggested and discussed.","PeriodicalId":10822,"journal":{"name":"Croatica Chemica Acta","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5562/cca3614","citationCount":"0","resultStr":"{\"title\":\"Mn(III) Catalyzed Electrochemical Reduction of CO2 on Carbon Electrodes\",\"authors\":\"Khalaf M. Alenezi\",\"doi\":\"10.5562/cca3614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though challenging, conversion of carbon dioxide (CO2) to valuable products is an emerging area of research. Electrochemical reduction (ECR) has emerged as an efficient and rapid technique to achieve this goal. Herein, 5,10,15,20-tetraphenyl-21H, 23H-porphine manganese(III) chloride [(Mn(TPP)Cl)] catalyzed CO2 reduction at vitreous carbon electrode in acetonitrile electrolyte is reported. The effect of catalyst concentration, addition of Brönsted acid (CF3CH2OH) to CO2-saturated solution have been studied and reported. Based on the results, possible mechanistic pathways have also been suggested and discussed.\",\"PeriodicalId\":10822,\"journal\":{\"name\":\"Croatica Chemica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5562/cca3614\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatica Chemica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.5562/cca3614\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatica Chemica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.5562/cca3614","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mn(III) Catalyzed Electrochemical Reduction of CO2 on Carbon Electrodes
Though challenging, conversion of carbon dioxide (CO2) to valuable products is an emerging area of research. Electrochemical reduction (ECR) has emerged as an efficient and rapid technique to achieve this goal. Herein, 5,10,15,20-tetraphenyl-21H, 23H-porphine manganese(III) chloride [(Mn(TPP)Cl)] catalyzed CO2 reduction at vitreous carbon electrode in acetonitrile electrolyte is reported. The effect of catalyst concentration, addition of Brönsted acid (CF3CH2OH) to CO2-saturated solution have been studied and reported. Based on the results, possible mechanistic pathways have also been suggested and discussed.
期刊介绍:
Croatica Chemica Acta (Croat. Chem. Acta, CCA), is an international journal of the Croatian Chemical Society publishing scientific articles of general interest to chemistry.