半fin- whitt区域的最短排队系统:收敛到扩散极限的速率

Q1 Mathematics
Anton Braverman
{"title":"半fin- whitt区域的最短排队系统:收敛到扩散极限的速率","authors":"Anton Braverman","doi":"10.1287/stsy.2022.0102","DOIUrl":null,"url":null,"abstract":"We bound the rate at which the steady-state distribution of the join-the-shortest-queue (JSQ) system converges, in the Halfin-Whitt regime, to its diffusion limit. Our proof uses Stein’s method and, specifically, the recently proposed prelimit generator comparison approach. The JSQ system is nontrivial and high-dimensional and has a state-space collapse component; our analysis may serve as a helpful example to readers wishing to apply the approach to their own setting.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Join-the-Shortest-Queue System in the Halfin-Whitt Regime: Rates of Convergence to the Diffusion Limit\",\"authors\":\"Anton Braverman\",\"doi\":\"10.1287/stsy.2022.0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We bound the rate at which the steady-state distribution of the join-the-shortest-queue (JSQ) system converges, in the Halfin-Whitt regime, to its diffusion limit. Our proof uses Stein’s method and, specifically, the recently proposed prelimit generator comparison approach. The JSQ system is nontrivial and high-dimensional and has a state-space collapse component; our analysis may serve as a helpful example to readers wishing to apply the approach to their own setting.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2022.0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2022.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们将加入最短队列(JSQ)系统的稳态分布在Halfin-Whitt区域收敛到其扩散极限的速率限定。我们的证明使用Stein的方法,特别是最近提出的预限制生成器比较方法。JSQ系统是非平凡的、高维的,具有状态空间坍缩成分;我们的分析可以作为一个有用的例子,读者希望应用的方法,以自己的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Join-the-Shortest-Queue System in the Halfin-Whitt Regime: Rates of Convergence to the Diffusion Limit
We bound the rate at which the steady-state distribution of the join-the-shortest-queue (JSQ) system converges, in the Halfin-Whitt regime, to its diffusion limit. Our proof uses Stein’s method and, specifically, the recently proposed prelimit generator comparison approach. The JSQ system is nontrivial and high-dimensional and has a state-space collapse component; our analysis may serve as a helpful example to readers wishing to apply the approach to their own setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信