由细胞外空间的点力引起的机械转导

Q2 Agricultural and Biological Sciences
B. Roth
{"title":"由细胞外空间的点力引起的机械转导","authors":"B. Roth","doi":"10.11145/J.BIOMATH.2018.10.197","DOIUrl":null,"url":null,"abstract":"The mechanical bidomain model is a mathematical description of biological tissue that focuses on mechanotransduction. The model’s fundamental hypothesis is that differences in the intracellular and extracellular displacements activate integrins, causing a cascade of biological effects. This paper presents analytical solutions of the bidomain equations for an extracellular point force. The intra- and extracellular spaces are incompressible, isotropic, and coupled. The expressions for the intra- and extracellular displacements each contain three terms: a monodomain term that is identical in the two spaces, and two bidomain terms, one of which decays exponentially. Near the origin the intracellular displacement remains finite and the extracellular displacement diverges. Far from the origin the monodomain displacement decays in inverse proportion to the distance, the strain decays as the distance squared, and the difference between the intra- and extracellular displacements decays as the distance cubed. These predictions could be tested by applying a force to a magnetic nanoparticle embedded in the extracellular matrix and recording the mechanotransduction response.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanotransduction caused by a point force in the extracellular space\",\"authors\":\"B. Roth\",\"doi\":\"10.11145/J.BIOMATH.2018.10.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical bidomain model is a mathematical description of biological tissue that focuses on mechanotransduction. The model’s fundamental hypothesis is that differences in the intracellular and extracellular displacements activate integrins, causing a cascade of biological effects. This paper presents analytical solutions of the bidomain equations for an extracellular point force. The intra- and extracellular spaces are incompressible, isotropic, and coupled. The expressions for the intra- and extracellular displacements each contain three terms: a monodomain term that is identical in the two spaces, and two bidomain terms, one of which decays exponentially. Near the origin the intracellular displacement remains finite and the extracellular displacement diverges. Far from the origin the monodomain displacement decays in inverse proportion to the distance, the strain decays as the distance squared, and the difference between the intra- and extracellular displacements decays as the distance cubed. These predictions could be tested by applying a force to a magnetic nanoparticle embedded in the extracellular matrix and recording the mechanotransduction response.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/J.BIOMATH.2018.10.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2018.10.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

力学双域模型是对生物组织的一种数学描述,其重点是力学转导。该模型的基本假设是,细胞内和细胞外位移的差异激活整合素,导致一系列生物效应。本文给出了胞外点力的双域方程的解析解。细胞内和细胞外的空间是不可压缩的、各向同性的、耦合的。细胞内和细胞外位移的表达式分别包含三个项:一个在两个空间中相同的单域项和两个双域项,其中一个呈指数衰减。在原点附近,胞内位移保持有限,胞外位移发散。远离原点时,单畴位移与距离成反比衰减,应变随距离的平方衰减,胞内和胞外位移之差随距离的立方衰减。这些预测可以通过对嵌入细胞外基质中的磁性纳米颗粒施加力并记录机械转导反应来测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanotransduction caused by a point force in the extracellular space
The mechanical bidomain model is a mathematical description of biological tissue that focuses on mechanotransduction. The model’s fundamental hypothesis is that differences in the intracellular and extracellular displacements activate integrins, causing a cascade of biological effects. This paper presents analytical solutions of the bidomain equations for an extracellular point force. The intra- and extracellular spaces are incompressible, isotropic, and coupled. The expressions for the intra- and extracellular displacements each contain three terms: a monodomain term that is identical in the two spaces, and two bidomain terms, one of which decays exponentially. Near the origin the intracellular displacement remains finite and the extracellular displacement diverges. Far from the origin the monodomain displacement decays in inverse proportion to the distance, the strain decays as the distance squared, and the difference between the intra- and extracellular displacements decays as the distance cubed. These predictions could be tested by applying a force to a magnetic nanoparticle embedded in the extracellular matrix and recording the mechanotransduction response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信