{"title":"基于改进的Halpin Tsai方法对功能梯度石墨烯增强压电瓦进行机电分析","authors":"Jitendra Adhikari, Rajeev Kumar, Satish Chandra Jain","doi":"10.1007/s10999-022-09632-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the electromechanical study of functionally graded graphene reinforced piezoelectric composite (FG-GRPC) structures using the modified Halpin Tsai (MHT) micromechanics model. Two piezoelectric material matrices, namely PZT-5H and PVDF, are reinforced with GPLs, an ultralightweight and highly rigid carbonaceous nanofiller. The developed graphene reinforced piezoelectric composites (GRPC) vary in the thickness direction to form FG-GRPC, with GPLs evenly scattered throughout the material matrix. The MHT model and Rule of the mixture (ROM) are used to determine the effective modulus of elasticity, poisson’s ratio, density, and piezoelectric characteristics of the GRPC structure. The spatial variation in composition across the thickness of FG-GRPC structural tiles is determined by a simple power law distribution. The voltage and power metrics of a circuit are calculated using first order shear deformation theory and Hamilton's approach from the governing differential equations of motion. An exhaustive parametric study is undertaken with an emphasis on the effects of GPL weight percentage, material grading exponent, thickness ratio, and frequency on the circuit metrics of FG-GRPC structures. Our findings indicate that the material grading exponent and a limited number of GPLs considerably improve the circuit parameters of FG-GRPC tiles. This study will demonstrate the required physical insights for coupled modelling of microelectromechanical systems, with applications spanning pressure sensors, small ultrasonic motors, active controllers, and intelligent systems.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 2","pages":"299 - 318"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using modified Halpin Tsai based approach for electromechanical analysis of functionally graded graphene reinforced piezoelectric tile\",\"authors\":\"Jitendra Adhikari, Rajeev Kumar, Satish Chandra Jain\",\"doi\":\"10.1007/s10999-022-09632-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the electromechanical study of functionally graded graphene reinforced piezoelectric composite (FG-GRPC) structures using the modified Halpin Tsai (MHT) micromechanics model. Two piezoelectric material matrices, namely PZT-5H and PVDF, are reinforced with GPLs, an ultralightweight and highly rigid carbonaceous nanofiller. The developed graphene reinforced piezoelectric composites (GRPC) vary in the thickness direction to form FG-GRPC, with GPLs evenly scattered throughout the material matrix. The MHT model and Rule of the mixture (ROM) are used to determine the effective modulus of elasticity, poisson’s ratio, density, and piezoelectric characteristics of the GRPC structure. The spatial variation in composition across the thickness of FG-GRPC structural tiles is determined by a simple power law distribution. The voltage and power metrics of a circuit are calculated using first order shear deformation theory and Hamilton's approach from the governing differential equations of motion. An exhaustive parametric study is undertaken with an emphasis on the effects of GPL weight percentage, material grading exponent, thickness ratio, and frequency on the circuit metrics of FG-GRPC structures. Our findings indicate that the material grading exponent and a limited number of GPLs considerably improve the circuit parameters of FG-GRPC tiles. This study will demonstrate the required physical insights for coupled modelling of microelectromechanical systems, with applications spanning pressure sensors, small ultrasonic motors, active controllers, and intelligent systems.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 2\",\"pages\":\"299 - 318\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-022-09632-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09632-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Using modified Halpin Tsai based approach for electromechanical analysis of functionally graded graphene reinforced piezoelectric tile
This study focuses on the electromechanical study of functionally graded graphene reinforced piezoelectric composite (FG-GRPC) structures using the modified Halpin Tsai (MHT) micromechanics model. Two piezoelectric material matrices, namely PZT-5H and PVDF, are reinforced with GPLs, an ultralightweight and highly rigid carbonaceous nanofiller. The developed graphene reinforced piezoelectric composites (GRPC) vary in the thickness direction to form FG-GRPC, with GPLs evenly scattered throughout the material matrix. The MHT model and Rule of the mixture (ROM) are used to determine the effective modulus of elasticity, poisson’s ratio, density, and piezoelectric characteristics of the GRPC structure. The spatial variation in composition across the thickness of FG-GRPC structural tiles is determined by a simple power law distribution. The voltage and power metrics of a circuit are calculated using first order shear deformation theory and Hamilton's approach from the governing differential equations of motion. An exhaustive parametric study is undertaken with an emphasis on the effects of GPL weight percentage, material grading exponent, thickness ratio, and frequency on the circuit metrics of FG-GRPC structures. Our findings indicate that the material grading exponent and a limited number of GPLs considerably improve the circuit parameters of FG-GRPC tiles. This study will demonstrate the required physical insights for coupled modelling of microelectromechanical systems, with applications spanning pressure sensors, small ultrasonic motors, active controllers, and intelligent systems.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.