pyRiemann-qiskit:黎曼几何量子分类实验的沙盒

Anton Andreev, G. Cattan, S. Chevallier, Quentin Barthélemy
{"title":"pyRiemann-qiskit:黎曼几何量子分类实验的沙盒","authors":"Anton Andreev, G. Cattan, S. Chevallier, Quentin Barthélemy","doi":"10.3897/rio.9.e101006","DOIUrl":null,"url":null,"abstract":"Quantum computing is a promising technology for machine learning, in terms of computational costs and outcomes. In this work, we intend to provide a framework that facilitates the use of quantum machine learning in the domain of brain-computer interfaces – where biomedical signals, such as brain waves, are processed.\n To this end, we integrated Qiskit, a well-known quantum library, with pyRiemann, a framework for the analysis of biomedical signals using Riemannian Geometry. In this paper, we describe our approach, the main elements of our implementation and our research directions. A key result is the creation of a standardised pipeline (QuantumClassifierWithDefaultRiemannianPipeline) for the binary classification of brain waves. The git repository reported in this paper also contains a complete test suite and examples to guide practitioners. We believe that this software will enable further research on the joint field of brain-computer interfaces and quantum computing.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pyRiemann-qiskit: A Sandbox for Quantum Classification Experiments with Riemannian Geometry\",\"authors\":\"Anton Andreev, G. Cattan, S. Chevallier, Quentin Barthélemy\",\"doi\":\"10.3897/rio.9.e101006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is a promising technology for machine learning, in terms of computational costs and outcomes. In this work, we intend to provide a framework that facilitates the use of quantum machine learning in the domain of brain-computer interfaces – where biomedical signals, such as brain waves, are processed.\\n To this end, we integrated Qiskit, a well-known quantum library, with pyRiemann, a framework for the analysis of biomedical signals using Riemannian Geometry. In this paper, we describe our approach, the main elements of our implementation and our research directions. A key result is the creation of a standardised pipeline (QuantumClassifierWithDefaultRiemannianPipeline) for the binary classification of brain waves. The git repository reported in this paper also contains a complete test suite and examples to guide practitioners. We believe that this software will enable further research on the joint field of brain-computer interfaces and quantum computing.\",\"PeriodicalId\":92718,\"journal\":{\"name\":\"Research ideas and outcomes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research ideas and outcomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/rio.9.e101006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.9.e101006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

就计算成本和结果而言,量子计算是一种很有前途的机器学习技术。在这项工作中,我们打算提供一个框架,促进在脑机接口领域使用量子机器学习,在那里处理生物医学信号,如脑电波。为此,我们将Qiskit(一个著名的量子库)与pyRiemann(一个使用黎曼几何分析生物医学信号的框架)集成在一起。在本文中,我们描述了我们的方法,我们的实施的主要要素和我们的研究方向。一个关键的结果是创建了一个标准化的管道(QuantumClassifierWithDefaultRiemannianPipeline),用于脑电波的二进制分类。本文中报告的git存储库还包含一个完整的测试套件和示例来指导从业者。我们相信,该软件将推动脑机接口和量子计算联合领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pyRiemann-qiskit: A Sandbox for Quantum Classification Experiments with Riemannian Geometry
Quantum computing is a promising technology for machine learning, in terms of computational costs and outcomes. In this work, we intend to provide a framework that facilitates the use of quantum machine learning in the domain of brain-computer interfaces – where biomedical signals, such as brain waves, are processed. To this end, we integrated Qiskit, a well-known quantum library, with pyRiemann, a framework for the analysis of biomedical signals using Riemannian Geometry. In this paper, we describe our approach, the main elements of our implementation and our research directions. A key result is the creation of a standardised pipeline (QuantumClassifierWithDefaultRiemannianPipeline) for the binary classification of brain waves. The git repository reported in this paper also contains a complete test suite and examples to guide practitioners. We believe that this software will enable further research on the joint field of brain-computer interfaces and quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信