热粘弹性中含摩擦的动态接触问题的分析结果

IF 0.2 Q4 MATHEMATICS
M. Bouallala, E. Essoufi
{"title":"热粘弹性中含摩擦的动态接触问题的分析结果","authors":"M. Bouallala, E. Essoufi","doi":"10.31392/MFAT-NPU26_4.2020.03","DOIUrl":null,"url":null,"abstract":"Abstra t. We present a mathemati al model whi h des ribes the dynami fri tional onta t between a thermo-vis oelast body and a ondu tive foundation. The onta t is modeled using the normal omplian e ondition, the quasistati version of Coulomb's law of fry fri tion. We derive the weak formulation and we prove the existen e and uniqueness result. The proofs are based on the theory of rst-order and se ond-order evolution inequalities and Bana h xed point theorem. We introdu e a new problem on perturbation of the onta t boundary ondition and we establish its ontinuous dependen e result.","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis results for dynamic contact problem with friction in thermo-viscoelasticity\",\"authors\":\"M. Bouallala, E. Essoufi\",\"doi\":\"10.31392/MFAT-NPU26_4.2020.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstra t. We present a mathemati al model whi h des ribes the dynami fri tional onta t between a thermo-vis oelast body and a ondu tive foundation. The onta t is modeled using the normal omplian e ondition, the quasistati version of Coulomb's law of fry fri tion. We derive the weak formulation and we prove the existen e and uniqueness result. The proofs are based on the theory of rst-order and se ond-order evolution inequalities and Bana h xed point theorem. We introdu e a new problem on perturbation of the onta t boundary ondition and we establish its ontinuous dependen e result.\",\"PeriodicalId\":44325,\"journal\":{\"name\":\"Methods of Functional Analysis and Topology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Functional Analysis and Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31392/MFAT-NPU26_4.2020.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/MFAT-NPU26_4.2020.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要:本文提出了一个描述热致弹性体与热致地基之间动力摩擦关系的数学模型。该模型采用正常的顺性条件,即库仑摩擦定律的准静态版本。导出了弱公式,证明了其存在性和唯一性结果。这些证明是基于一阶和六阶演化不等式理论和Bana杂化点定理。我们引入了一个新的关于边界条件摄动的问题,并建立了它的连续相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis results for dynamic contact problem with friction in thermo-viscoelasticity
Abstra t. We present a mathemati al model whi h des ribes the dynami fri tional onta t between a thermo-vis oelast body and a ondu tive foundation. The onta t is modeled using the normal omplian e ondition, the quasistati version of Coulomb's law of fry fri tion. We derive the weak formulation and we prove the existen e and uniqueness result. The proofs are based on the theory of rst-order and se ond-order evolution inequalities and Bana h xed point theorem. We introdu e a new problem on perturbation of the onta t boundary ondition and we establish its ontinuous dependen e result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信