千层精油在人体皮肤细胞中表现出组织重塑和代谢调节活性

Xuesheng Han, Tory L. Parker
{"title":"千层精油在人体皮肤细胞中表现出组织重塑和代谢调节活性","authors":"Xuesheng Han, Tory L. Parker","doi":"10.1080/23312025.2017.1318476","DOIUrl":null,"url":null,"abstract":"Abstract Melaleuca (Melaleuca alternifolia) essential oil (MEO), commonly known as tea tree oil, is popularly used in skincare products. In the current study, we investigated the biological activity of a commercially available MEO (with terpinen-4-ol as the major active component) in pre-inflamed human dermal fibroblasts, which were designed to simulate chronic inflammation. We analyzed the levels of seventeen biomarkers that are important in inflammation and tissue remodeling. Additionally, we studied the effect of MEO on genome-wide gene expression. MEO showed a robust antiproliferative activity against the cells. It also increased the levels of monocyte chemoattractant protein 1, an inflammatory chemokine, and several tissue remodeling molecules such as epidermal growth factor receptor, matrix metalloproteinase 1, and tissue inhibitor of metalloproteinase-1 and -2. It was also noted that MEO diversely modulated global gene expression. Furthermore, Ingenuity Pathway Analysis showed that MEO affects many important signaling pathways that are closely related to metabolism, which suggests its potential modulation of metabolism. The results provide an important evidence of the biological activity of MEO in human dermal fibroblasts. They also suggest that MEO plays useful roles in tissue remodeling and metabolism; however, further research is needed to explore the mechanisms underlying these actions.","PeriodicalId":10412,"journal":{"name":"Cogent Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23312025.2017.1318476","citationCount":"4","resultStr":"{\"title\":\"Melaleuca (Melaleuca alternifolia) essential oil demonstrates tissue-remodeling and metabolism-modulating activities in human skin cells\",\"authors\":\"Xuesheng Han, Tory L. Parker\",\"doi\":\"10.1080/23312025.2017.1318476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Melaleuca (Melaleuca alternifolia) essential oil (MEO), commonly known as tea tree oil, is popularly used in skincare products. In the current study, we investigated the biological activity of a commercially available MEO (with terpinen-4-ol as the major active component) in pre-inflamed human dermal fibroblasts, which were designed to simulate chronic inflammation. We analyzed the levels of seventeen biomarkers that are important in inflammation and tissue remodeling. Additionally, we studied the effect of MEO on genome-wide gene expression. MEO showed a robust antiproliferative activity against the cells. It also increased the levels of monocyte chemoattractant protein 1, an inflammatory chemokine, and several tissue remodeling molecules such as epidermal growth factor receptor, matrix metalloproteinase 1, and tissue inhibitor of metalloproteinase-1 and -2. It was also noted that MEO diversely modulated global gene expression. Furthermore, Ingenuity Pathway Analysis showed that MEO affects many important signaling pathways that are closely related to metabolism, which suggests its potential modulation of metabolism. The results provide an important evidence of the biological activity of MEO in human dermal fibroblasts. They also suggest that MEO plays useful roles in tissue remodeling and metabolism; however, further research is needed to explore the mechanisms underlying these actions.\",\"PeriodicalId\":10412,\"journal\":{\"name\":\"Cogent Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23312025.2017.1318476\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23312025.2017.1318476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23312025.2017.1318476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要白千层精油(MEO),俗称茶树油,广泛用于护肤品中。在目前的研究中,我们研究了市售MEO(以萜品烯-4-醇为主要活性成分)在炎症前人类真皮成纤维细胞中的生物活性,该成纤维细胞旨在模拟慢性炎症。我们分析了17种在炎症和组织重塑中重要的生物标志物的水平。此外,我们还研究了MEO对全基因组基因表达的影响。MEO对细胞显示出强大的抗增殖活性。它还增加了单核细胞趋化蛋白1(一种炎症趋化因子)和几种组织重塑分子的水平,如表皮生长因子受体、基质金属蛋白酶1和金属蛋白酶组织抑制剂-1和-2。还注意到MEO对全局基因表达进行了不同的调节。此外,独创性通路分析表明,MEO影响许多与代谢密切相关的重要信号通路,这表明其对代谢的潜在调节作用。该结果为MEO在人真皮成纤维细胞中的生物学活性提供了重要证据。他们还表明,MEO在组织重塑和代谢中发挥着有用的作用;然而,还需要进一步的研究来探索这些行为背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melaleuca (Melaleuca alternifolia) essential oil demonstrates tissue-remodeling and metabolism-modulating activities in human skin cells
Abstract Melaleuca (Melaleuca alternifolia) essential oil (MEO), commonly known as tea tree oil, is popularly used in skincare products. In the current study, we investigated the biological activity of a commercially available MEO (with terpinen-4-ol as the major active component) in pre-inflamed human dermal fibroblasts, which were designed to simulate chronic inflammation. We analyzed the levels of seventeen biomarkers that are important in inflammation and tissue remodeling. Additionally, we studied the effect of MEO on genome-wide gene expression. MEO showed a robust antiproliferative activity against the cells. It also increased the levels of monocyte chemoattractant protein 1, an inflammatory chemokine, and several tissue remodeling molecules such as epidermal growth factor receptor, matrix metalloproteinase 1, and tissue inhibitor of metalloproteinase-1 and -2. It was also noted that MEO diversely modulated global gene expression. Furthermore, Ingenuity Pathway Analysis showed that MEO affects many important signaling pathways that are closely related to metabolism, which suggests its potential modulation of metabolism. The results provide an important evidence of the biological activity of MEO in human dermal fibroblasts. They also suggest that MEO plays useful roles in tissue remodeling and metabolism; however, further research is needed to explore the mechanisms underlying these actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Biology
Cogent Biology MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信