闭流形上抛物型Ginzburg-Landau方程极限的结构描述

IF 1.5 3区 数学 Q1 MATHEMATICS
Andrew Colinet
{"title":"闭流形上抛物型Ginzburg-Landau方程极限的结构描述","authors":"Andrew Colinet","doi":"10.57262/ade027-1112-823","DOIUrl":null,"url":null,"abstract":"In the setting of a compact Riemannian manifold of dimension N ≥ 3 we provide a structural description of the limiting behaviour of the energy measures of solutions to the parabolic Ginzburg-Landau equation. In particular, we provide a decomposition of the limiting energy measure into a diffuse part, which is absolutely continuous with respect to the volume measure, and a concentrated part supported on a codimension 2 rectifiable subset. We also demonstrate that the time evolution of the diffuse part is determined by the heat equation while the concentrated part evolves according to a Brakke flow. This paper extends the work of Bethuel, Orlandi, and Smets from [8].","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural descriptions of limits of the parabolic Ginzburg-Landau equation on closed manifolds\",\"authors\":\"Andrew Colinet\",\"doi\":\"10.57262/ade027-1112-823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the setting of a compact Riemannian manifold of dimension N ≥ 3 we provide a structural description of the limiting behaviour of the energy measures of solutions to the parabolic Ginzburg-Landau equation. In particular, we provide a decomposition of the limiting energy measure into a diffuse part, which is absolutely continuous with respect to the volume measure, and a concentrated part supported on a codimension 2 rectifiable subset. We also demonstrate that the time evolution of the diffuse part is determined by the heat equation while the concentrated part evolves according to a Brakke flow. This paper extends the work of Bethuel, Orlandi, and Smets from [8].\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-1112-823\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-1112-823","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在维数N≥3的紧致黎曼流形上,我们给出了抛物型Ginzburg-Landau方程解的能量测度的极限性质的结构描述。特别地,我们将极限能量测度分解为相对于体积测度绝对连续的扩散部分和支持在余维2可直子集上的集中部分。我们还证明了扩散部分的时间演化是由热方程决定的,而集中部分是根据Brakke流演化的。本文扩展了Bethuel、Orlandi和Smets在[8]中的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural descriptions of limits of the parabolic Ginzburg-Landau equation on closed manifolds
In the setting of a compact Riemannian manifold of dimension N ≥ 3 we provide a structural description of the limiting behaviour of the energy measures of solutions to the parabolic Ginzburg-Landau equation. In particular, we provide a decomposition of the limiting energy measure into a diffuse part, which is absolutely continuous with respect to the volume measure, and a concentrated part supported on a codimension 2 rectifiable subset. We also demonstrate that the time evolution of the diffuse part is determined by the heat equation while the concentrated part evolves according to a Brakke flow. This paper extends the work of Bethuel, Orlandi, and Smets from [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信