{"title":"混合泊松变换新加权指数分布及其在偏斜和分散计数数据上的应用","authors":"A. Adetunji, Shamsul Rijal Muhammad Sabri","doi":"10.18187/pjsor.v19i3.4113","DOIUrl":null,"url":null,"abstract":"In this study, a new three-parameter mixed Poisson Cubic Rank Transmuted New Weighted Exponential Distribution is proposed. The new discrete distribution is obtained by mixing the Poisson distribution with a newly obtained Cubic Rank Transmuted New Weighted Exponential Distribution. Various shapes and mathematical properties of both mixing distribution and the new count distribution are examined. Special cases of the new proposition are also identified. The distribution along with its special cases and other count distributions are assumed for skewed and dispersed count observations. The maximum likelihood estimation is used to provide estimates for the parameters of all examined distributions. Results show that the new proposition along with some of its special cases provide good fit for all the examined data.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Poisson Transmuted New Weighted Exponential Distribution with Applications on Skewed and Dispersed Count Data\",\"authors\":\"A. Adetunji, Shamsul Rijal Muhammad Sabri\",\"doi\":\"10.18187/pjsor.v19i3.4113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a new three-parameter mixed Poisson Cubic Rank Transmuted New Weighted Exponential Distribution is proposed. The new discrete distribution is obtained by mixing the Poisson distribution with a newly obtained Cubic Rank Transmuted New Weighted Exponential Distribution. Various shapes and mathematical properties of both mixing distribution and the new count distribution are examined. Special cases of the new proposition are also identified. The distribution along with its special cases and other count distributions are assumed for skewed and dispersed count observations. The maximum likelihood estimation is used to provide estimates for the parameters of all examined distributions. Results show that the new proposition along with some of its special cases provide good fit for all the examined data.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v19i3.4113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v19i3.4113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Mixed Poisson Transmuted New Weighted Exponential Distribution with Applications on Skewed and Dispersed Count Data
In this study, a new three-parameter mixed Poisson Cubic Rank Transmuted New Weighted Exponential Distribution is proposed. The new discrete distribution is obtained by mixing the Poisson distribution with a newly obtained Cubic Rank Transmuted New Weighted Exponential Distribution. Various shapes and mathematical properties of both mixing distribution and the new count distribution are examined. Special cases of the new proposition are also identified. The distribution along with its special cases and other count distributions are assumed for skewed and dispersed count observations. The maximum likelihood estimation is used to provide estimates for the parameters of all examined distributions. Results show that the new proposition along with some of its special cases provide good fit for all the examined data.
期刊介绍:
Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.