关于Wishart分布的一些已知推导和新推导:一个教训

H. Ogasawara
{"title":"关于Wishart分布的一些已知推导和新推导:一个教训","authors":"H. Ogasawara","doi":"10.35566/jbds/v3n1/ogasawara","DOIUrl":null,"url":null,"abstract":"The proofs of the probability density function (pdf) of the Wishart distribution tend to be complicated with geometric viewpoints, tedious Jacobians and not self-contained algebra. In this paper, some known proofs and simple new ones for uncorrelated and correlated cases are provided with didactic explanations. For the new derivation of the uncorrelated case, an elementary direct derivation of the distribution of the Bartlett-decomposed matrix is provided. In the derivation of the correlated case from the uncorrelated one, simple methods including a new one are shown.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some known derivations and new ones for the Wishart distribution: A didactic\",\"authors\":\"H. Ogasawara\",\"doi\":\"10.35566/jbds/v3n1/ogasawara\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proofs of the probability density function (pdf) of the Wishart distribution tend to be complicated with geometric viewpoints, tedious Jacobians and not self-contained algebra. In this paper, some known proofs and simple new ones for uncorrelated and correlated cases are provided with didactic explanations. For the new derivation of the uncorrelated case, an elementary direct derivation of the distribution of the Bartlett-decomposed matrix is provided. In the derivation of the correlated case from the uncorrelated one, simple methods including a new one are shown.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v3n1/ogasawara\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n1/ogasawara","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wishart分布的概率密度函数(pdf)的证明往往是复杂的,具有几何观点、乏味的Jacobian和非自含代数。本文对不相关和相关案例的一些已知证明和简单的新证明进行了教条主义的解释。对于不相关情形的新推导,提供了Bartlett分解矩阵分布的初等直接推导。在从不相关情况推导相关情况时,给出了包括新方法在内的简单方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some known derivations and new ones for the Wishart distribution: A didactic
The proofs of the probability density function (pdf) of the Wishart distribution tend to be complicated with geometric viewpoints, tedious Jacobians and not self-contained algebra. In this paper, some known proofs and simple new ones for uncorrelated and correlated cases are provided with didactic explanations. For the new derivation of the uncorrelated case, an elementary direct derivation of the distribution of the Bartlett-decomposed matrix is provided. In the derivation of the correlated case from the uncorrelated one, simple methods including a new one are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信