Aekartit Boonprasertpoh, D. Pentrakoon, Jirawut Junkasem
{"title":"PBAT对PBS/PBAT泡沫物理、形态和力学性能的影响","authors":"Aekartit Boonprasertpoh, D. Pentrakoon, Jirawut Junkasem","doi":"10.1177/0262489319873859","DOIUrl":null,"url":null,"abstract":"This study examines the effect of poly(butylene adipate-co-terephthalate) (PBAT) content on the physical, morphological, and mechanical properties of poly(butylene succinate) (PBS)/PBAT foam. A compression molding technique was used to prepare the PBS/PBAT foam using the chemical blowing agent azodicarbonamide and the cross-linking agent dicumyl peroxide. The chemical structure and morphological properties of PBS/PBAT foam were examined via Fourier transform infrared and scanning electron microscopy techniques, respectively, whereas tensile and flexural properties were investigated using a universal testing machine. The results reveal that the incorporation of PBAT barely enhances the viscosity of the PBS/PBAT blend, producing only minor changes in the average cell size of PBS/PBAT foam. However, increasing the PBAT content contributes to a relatively significant improvement in the flexibility and toughness of PBS/PBAT foam, where a decrease in Young’s modulus and tensile strength of the PBS/PBAT foam is observed compared with those of the PBS foam. Similar behavior to the tensile results is noticed for the flexural properties of the neat and PBS/PBAT foams.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319873859","citationCount":"18","resultStr":"{\"title\":\"Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam\",\"authors\":\"Aekartit Boonprasertpoh, D. Pentrakoon, Jirawut Junkasem\",\"doi\":\"10.1177/0262489319873859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the effect of poly(butylene adipate-co-terephthalate) (PBAT) content on the physical, morphological, and mechanical properties of poly(butylene succinate) (PBS)/PBAT foam. A compression molding technique was used to prepare the PBS/PBAT foam using the chemical blowing agent azodicarbonamide and the cross-linking agent dicumyl peroxide. The chemical structure and morphological properties of PBS/PBAT foam were examined via Fourier transform infrared and scanning electron microscopy techniques, respectively, whereas tensile and flexural properties were investigated using a universal testing machine. The results reveal that the incorporation of PBAT barely enhances the viscosity of the PBS/PBAT blend, producing only minor changes in the average cell size of PBS/PBAT foam. However, increasing the PBAT content contributes to a relatively significant improvement in the flexibility and toughness of PBS/PBAT foam, where a decrease in Young’s modulus and tensile strength of the PBS/PBAT foam is observed compared with those of the PBS foam. Similar behavior to the tensile results is noticed for the flexural properties of the neat and PBS/PBAT foams.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489319873859\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489319873859\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319873859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of PBAT on physical, morphological, and mechanical properties of PBS/PBAT foam
This study examines the effect of poly(butylene adipate-co-terephthalate) (PBAT) content on the physical, morphological, and mechanical properties of poly(butylene succinate) (PBS)/PBAT foam. A compression molding technique was used to prepare the PBS/PBAT foam using the chemical blowing agent azodicarbonamide and the cross-linking agent dicumyl peroxide. The chemical structure and morphological properties of PBS/PBAT foam were examined via Fourier transform infrared and scanning electron microscopy techniques, respectively, whereas tensile and flexural properties were investigated using a universal testing machine. The results reveal that the incorporation of PBAT barely enhances the viscosity of the PBS/PBAT blend, producing only minor changes in the average cell size of PBS/PBAT foam. However, increasing the PBAT content contributes to a relatively significant improvement in the flexibility and toughness of PBS/PBAT foam, where a decrease in Young’s modulus and tensile strength of the PBS/PBAT foam is observed compared with those of the PBS foam. Similar behavior to the tensile results is noticed for the flexural properties of the neat and PBS/PBAT foams.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.