环状RNA的翻译:翻译产物的功能和相关的生物信息学方法

IF 2.4 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Current Bioinformatics Pub Date : 2024-01-01 Epub Date: 2023-10-03 DOI:10.2174/1574893618666230505101059
Jae Yeon Hwang, Tae Lim Kook, Sydney M Paulus, Juw Won Park
{"title":"环状RNA的翻译:翻译产物的功能和相关的生物信息学方法","authors":"Jae Yeon Hwang, Tae Lim Kook, Sydney M Paulus, Juw Won Park","doi":"10.2174/1574893618666230505101059","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.</p>","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches.\",\"authors\":\"Jae Yeon Hwang, Tae Lim Kook, Sydney M Paulus, Juw Won Park\",\"doi\":\"10.2174/1574893618666230505101059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.</p>\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1574893618666230505101059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1574893618666230505101059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,研究发现了一种特殊形式的选择性剪接(AS),可以产生环状的RNA。这与正常AS形成对比,后者产生线性形式的RNA。尽管这些circRNA因其生物发生和功能在科学界引起了相当大的关注,但这些研究的重点是circRNA的调节作用,假设circRNA是非编码的。作为非编码RNA,它们可能通过吸收miRNA和RNA结合蛋白(RBPs)来调节mRNA转录、肿瘤起始和翻译。然而,除了circRNA的这些调节作用外,最近的研究为它们的翻译提供了有力的证据。circRNAs的翻译有望在促进癌症细胞生长和激活与癌症发展相关的分子途径方面发挥重要作用。在某些情况下,circRNA的翻译被证明是由内部核糖体进入位点(IRES)有效驱动的。使用高通量测序和IRES识别和表征circRNA翻译的计算工具的开发增加了从circRNA中翻译的可识别蛋白质。反过来,它对帮助研究人员理解circRNA衍生蛋白质的功能作用产生了重大影响。已经开发了新的网络资源,用于聚合、编目和可视化来自先前研究的circRNA的翻译信息。本文综述了circRNA的一般概念、circRNA生物发生、circRNA的翻译以及现有的circRNA工具和数据库,为circRNA研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches.

Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信