{"title":"Kac守恒粒子系统的大偏差和Boltzmann方程的能量非守恒解:预测速率函数的反例","authors":"Daniel Heydecker","doi":"10.1214/22-aap1852","DOIUrl":null,"url":null,"abstract":"We consider the dynamic large deviation behaviour of Kac's collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $\\mathfrak{o}(N)$ particles with probability $e^{-\\mathcal{O}(N)}$.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Large deviations of Kac’s conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function\",\"authors\":\"Daniel Heydecker\",\"doi\":\"10.1214/22-aap1852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the dynamic large deviation behaviour of Kac's collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $\\\\mathfrak{o}(N)$ particles with probability $e^{-\\\\mathcal{O}(N)}$.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1852\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1852","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Large deviations of Kac’s conservative particle system and energy nonconserving solutions to the Boltzmann equation: A counterexample to the predicted rate function
We consider the dynamic large deviation behaviour of Kac's collisional process for a range of initial conditions including equilibrium. We prove an upper bound with a rate function of the type which has previously been found for kinetic large deviation problems, and a matching lower bound restricted to a class of sufficiently good paths. However, we are able to show by an explicit counterexample that the predicted rate function does not extend to a global lower bound: even though the particle system almost surely conserves energy, large deviation behaviour includes solutions to the Boltzmann equation which do not conserve energy, as found by Lu and Wennberg, and these occur strictly more rarely than predicted by the proposed rate function. At the level of the particle system, this occurs because a macroscopic proportion of energy can concentrate in $\mathfrak{o}(N)$ particles with probability $e^{-\mathcal{O}(N)}$.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.