{"title":"综合地震灾害和社会脆弱性对印度东北部地区的地震风险评估","authors":"Navdeep Agrawal, Laxmi Gupta, J. Dixit, S. Dash","doi":"10.1080/23789689.2022.2133764","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present study aims at conducting a comprehensive seismic risk assessment for the North Eastern Region of India at regional and sub-regional levels by integrating probabilistic seismic hazard and social vulnerability assessments. Bedrock-level peak ground acceleration varied from 0.14 to 0.69g for the return period of 475 years. Using PCA, the social vulnerability index (SVI) was generated considering district-level socioeconomic indicators. Built environment quality, illiteracy, access to amenities, dependent population, and employment opportunities contributed to high SVI. Most vulnerable districts were concentrated in the Brahmaputra floodplains, Tripura fold belt, and Imphal valley. At the regional level, significant parts of Assam, Meghalaya, Arunachal Pradesh, and Tripura lie in moderate to very high-risk zones. At the sub-regional level, Nagaland accounts for the highest proportion of areas in high to very high-risk zones. The findings will aid site-specific resilient infrastructure design, disaster risk reduction, and effective resource allocation for the risk-prone areas.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seismic risk assessment for the North Eastern Region of India by integrating seismic hazard and social vulnerability\",\"authors\":\"Navdeep Agrawal, Laxmi Gupta, J. Dixit, S. Dash\",\"doi\":\"10.1080/23789689.2022.2133764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The present study aims at conducting a comprehensive seismic risk assessment for the North Eastern Region of India at regional and sub-regional levels by integrating probabilistic seismic hazard and social vulnerability assessments. Bedrock-level peak ground acceleration varied from 0.14 to 0.69g for the return period of 475 years. Using PCA, the social vulnerability index (SVI) was generated considering district-level socioeconomic indicators. Built environment quality, illiteracy, access to amenities, dependent population, and employment opportunities contributed to high SVI. Most vulnerable districts were concentrated in the Brahmaputra floodplains, Tripura fold belt, and Imphal valley. At the regional level, significant parts of Assam, Meghalaya, Arunachal Pradesh, and Tripura lie in moderate to very high-risk zones. At the sub-regional level, Nagaland accounts for the highest proportion of areas in high to very high-risk zones. The findings will aid site-specific resilient infrastructure design, disaster risk reduction, and effective resource allocation for the risk-prone areas.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2022.2133764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2133764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Seismic risk assessment for the North Eastern Region of India by integrating seismic hazard and social vulnerability
ABSTRACT The present study aims at conducting a comprehensive seismic risk assessment for the North Eastern Region of India at regional and sub-regional levels by integrating probabilistic seismic hazard and social vulnerability assessments. Bedrock-level peak ground acceleration varied from 0.14 to 0.69g for the return period of 475 years. Using PCA, the social vulnerability index (SVI) was generated considering district-level socioeconomic indicators. Built environment quality, illiteracy, access to amenities, dependent population, and employment opportunities contributed to high SVI. Most vulnerable districts were concentrated in the Brahmaputra floodplains, Tripura fold belt, and Imphal valley. At the regional level, significant parts of Assam, Meghalaya, Arunachal Pradesh, and Tripura lie in moderate to very high-risk zones. At the sub-regional level, Nagaland accounts for the highest proportion of areas in high to very high-risk zones. The findings will aid site-specific resilient infrastructure design, disaster risk reduction, and effective resource allocation for the risk-prone areas.
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.