{"title":"关于求和多项式的一阶降度","authors":"S. Kousidis, A. Wiemers","doi":"10.1515/jmc-2017-0022","DOIUrl":null,"url":null,"abstract":"Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"13 1","pages":"229 - 237"},"PeriodicalIF":0.5000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2017-0022","citationCount":"1","resultStr":"{\"title\":\"On the first fall degree of summation polynomials\",\"authors\":\"S. Kousidis, A. Wiemers\",\"doi\":\"10.1515/jmc-2017-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"13 1\",\"pages\":\"229 - 237\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2017-0022\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2017-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2017-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.