最不利噪声的存在

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Dongzhou Huang
{"title":"最不利噪声的存在","authors":"Dongzhou Huang","doi":"10.1214/23-ecp533","DOIUrl":null,"url":null,"abstract":"Suppose that a random variable $X$ of interest is observed. This paper concerns\"the least favorable noise\"$\\hat{Y}_{\\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\\mathrm{var} Y \\leq \\epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\\hat{Y}_{\\epsilon}$ must exist and that its variance must be $\\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\\inf_{\\mathrm{var} Y \\leq \\epsilon^2} \\, \\mathrm{var} \\, E[X|X+Y]$ is both strictly decreasing and right continuous in $\\epsilon$.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence of the least favorable noise\",\"authors\":\"Dongzhou Huang\",\"doi\":\"10.1214/23-ecp533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that a random variable $X$ of interest is observed. This paper concerns\\\"the least favorable noise\\\"$\\\\hat{Y}_{\\\\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\\\\mathrm{var} Y \\\\leq \\\\epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\\\\hat{Y}_{\\\\epsilon}$ must exist and that its variance must be $\\\\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\\\\inf_{\\\\mathrm{var} Y \\\\leq \\\\epsilon^2} \\\\, \\\\mathrm{var} \\\\, E[X|X+Y]$ is both strictly decreasing and right continuous in $\\\\epsilon$.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp533\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp533","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

假设观察到一个感兴趣的随机变量$X$。本文关注的是“最不利噪声”$\hat{Y}_{\epsilon}$,它在$Y$类中使预测误差$E [X - E[X|X+Y]]^2 $最大化(或使方差$E[X| X+Y]$最小化),而$Y$独立于$X$和$\mathrm{var} Y \leq \epsilon^2$。这个问题最早是由恩斯特、卡根和罗杰斯(b[3])研究的。在本文中,我们证明了最不利噪声$\hat{Y}_{\epsilon}$必须存在,其方差必须为$\epsilon^2$。存在性的证明依赖于我们为条件期望的方差开发的收敛结果。进一步,我们证明了函数$\inf_{\mathrm{var} Y \leq \epsilon^2} \, \mathrm{var} \, E[X|X+Y]$在$\epsilon$中既是严格递减的又是右连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence of the least favorable noise
Suppose that a random variable $X$ of interest is observed. This paper concerns"the least favorable noise"$\hat{Y}_{\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\mathrm{var} Y \leq \epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\hat{Y}_{\epsilon}$ must exist and that its variance must be $\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\inf_{\mathrm{var} Y \leq \epsilon^2} \, \mathrm{var} \, E[X|X+Y]$ is both strictly decreasing and right continuous in $\epsilon$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信