最不利噪声的存在

Pub Date : 2023-01-01 DOI:10.1214/23-ecp533
Dongzhou Huang
{"title":"最不利噪声的存在","authors":"Dongzhou Huang","doi":"10.1214/23-ecp533","DOIUrl":null,"url":null,"abstract":"Suppose that a random variable $X$ of interest is observed. This paper concerns\"the least favorable noise\"$\\hat{Y}_{\\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\\mathrm{var} Y \\leq \\epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\\hat{Y}_{\\epsilon}$ must exist and that its variance must be $\\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\\inf_{\\mathrm{var} Y \\leq \\epsilon^2} \\, \\mathrm{var} \\, E[X|X+Y]$ is both strictly decreasing and right continuous in $\\epsilon$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence of the least favorable noise\",\"authors\":\"Dongzhou Huang\",\"doi\":\"10.1214/23-ecp533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that a random variable $X$ of interest is observed. This paper concerns\\\"the least favorable noise\\\"$\\\\hat{Y}_{\\\\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\\\\mathrm{var} Y \\\\leq \\\\epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\\\\hat{Y}_{\\\\epsilon}$ must exist and that its variance must be $\\\\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\\\\inf_{\\\\mathrm{var} Y \\\\leq \\\\epsilon^2} \\\\, \\\\mathrm{var} \\\\, E[X|X+Y]$ is both strictly decreasing and right continuous in $\\\\epsilon$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设观察到一个感兴趣的随机变量$X$。本文关注的是“最不利噪声”$\hat{Y}_{\epsilon}$,它在$Y$类中使预测误差$E [X - E[X|X+Y]]^2 $最大化(或使方差$E[X| X+Y]$最小化),而$Y$独立于$X$和$\mathrm{var} Y \leq \epsilon^2$。这个问题最早是由恩斯特、卡根和罗杰斯(b[3])研究的。在本文中,我们证明了最不利噪声$\hat{Y}_{\epsilon}$必须存在,其方差必须为$\epsilon^2$。存在性的证明依赖于我们为条件期望的方差开发的收敛结果。进一步,我们证明了函数$\inf_{\mathrm{var} Y \leq \epsilon^2} \, \mathrm{var} \, E[X|X+Y]$在$\epsilon$中既是严格递减的又是右连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The existence of the least favorable noise
Suppose that a random variable $X$ of interest is observed. This paper concerns"the least favorable noise"$\hat{Y}_{\epsilon}$, which maximizes the prediction error $E [X - E[X|X+Y]]^2 $ (or minimizes the variance of $E[X| X+Y]$) in the class of $Y$ with $Y$ independent of $X$ and $\mathrm{var} Y \leq \epsilon^2$. This problem was first studied by Ernst, Kagan, and Rogers ([3]). In the present manuscript, we show that the least favorable noise $\hat{Y}_{\epsilon}$ must exist and that its variance must be $\epsilon^2$. The proof of existence relies on a convergence result we develop for variances of conditional expectations. Further, we show that the function $\inf_{\mathrm{var} Y \leq \epsilon^2} \, \mathrm{var} \, E[X|X+Y]$ is both strictly decreasing and right continuous in $\epsilon$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信