无迭代积分的Milstein格式的全变分界

IF 0.8 Q3 STATISTICS & PROBABILITY
Toshihiro Yamada
{"title":"无迭代积分的Milstein格式的全变分界","authors":"Toshihiro Yamada","doi":"10.2139/ssrn.4333285","DOIUrl":null,"url":null,"abstract":"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{\\mathrm{TV}}(X_{T}^{\\varepsilon},\\bar{X}_{T}^{\\varepsilon,\\mathrm{Mil},(n)})\\leq C\\varepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{\\mathrm{TV}}(X_{T}^{\\varepsilon},\\bar{X}_{T}^{\\varepsilon,\\mathrm{EM},(n)})\\leq C\\varepsilon/n , where d TV d_{\\mathrm{TV}} is the total variation distance, X ε X^{\\varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) \\bar{X}^{\\varepsilon,\\mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) \\bar{X}^{\\varepsilon,\\mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total variation bound for Milstein scheme without iterated integrals\",\"authors\":\"Toshihiro Yamada\",\"doi\":\"10.2139/ssrn.4333285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{\\\\mathrm{TV}}(X_{T}^{\\\\varepsilon},\\\\bar{X}_{T}^{\\\\varepsilon,\\\\mathrm{Mil},(n)})\\\\leq C\\\\varepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{\\\\mathrm{TV}}(X_{T}^{\\\\varepsilon},\\\\bar{X}_{T}^{\\\\varepsilon,\\\\mathrm{EM},(n)})\\\\leq C\\\\varepsilon/n , where d TV d_{\\\\mathrm{TV}} is the total variation distance, X ε X^{\\\\varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) \\\\bar{X}^{\\\\varepsilon,\\\\mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) \\\\bar{X}^{\\\\varepsilon,\\\\mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4333285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4333285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了随机微分方程米尔斯坦格式的新结果。我们证明(i) Milstein格式在全变分意义上是弱逼近,并且在非交换向量场下由布朗运动的二阶多项式给出,而不使用迭代积分;(ii)在渐近意义上,Milstein格式的精度优于Euler-Maruyama格式。特别地,我们证明了d TV减去(X T ε, X¯T ε, Mil,(n))≤C减去ε 2/n d_ {\mathrm{TV}} ({X_T}^ {\varepsilon}, \bar{X} _T{^ }{\varepsilon, \mathrm{Mil},(n}))\leq C \varepsilon ^{2}/n和d TV减去(X T ε, X¯T ε, EM,(n))≤C减去ε /n d_ {\mathrm{TV}} ({X_T}^ {\varepsilon}, \bar{X} _T{^ }{\varepsilon, \mathrm{EM},(n)})\leq C \varepsilon /n,其中d TV减去d_ {\mathrm{TV}}为总变异距离,X ε X^ {\varepsilon}是一个具有小参数的随机微分方程的解,X¯ε, Mil,(n) \bar{X} ^ {\varepsilon, \mathrm{Mil},(n)}和X¯ε, EM,(n)\bar{X} ^ {\varepsilon, \mathrm{EM},(n)}分别是无迭代积分的Milstein格式和Euler-Maruyama格式。在计算方面,该方案可以通过简单的模拟来估计概率分布函数,而无需计算lsamvy面积。数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total variation bound for Milstein scheme without iterated integrals
Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{\mathrm{TV}}(X_{T}^{\varepsilon},\bar{X}_{T}^{\varepsilon,\mathrm{Mil},(n)})\leq C\varepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{\mathrm{TV}}(X_{T}^{\varepsilon},\bar{X}_{T}^{\varepsilon,\mathrm{EM},(n)})\leq C\varepsilon/n , where d TV d_{\mathrm{TV}} is the total variation distance, X ε X^{\varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) \bar{X}^{\varepsilon,\mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) \bar{X}^{\varepsilon,\mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信