二维Boussinesq方程中的非线性无粘阻尼和剪切浮力不稳定性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jacob Bedrossian, Roberta Bianchini, Michele Coti Zelati, Michele Dolce
{"title":"二维Boussinesq方程中的非线性无粘阻尼和剪切浮力不稳定性","authors":"Jacob Bedrossian,&nbsp;Roberta Bianchini,&nbsp;Michele Coti Zelati,&nbsp;Michele Dolce","doi":"10.1002/cpa.22123","DOIUrl":null,"url":null,"abstract":"<p>We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>t</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(t^{-1/2})$</annotation>\n </semantics></math> inviscid damping while the vorticity and density gradient grow as <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>t</mi>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(t^{1/2})$</annotation>\n </semantics></math>. The result holds at least until the natural, nonlinear timescale <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≈</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$t \\approx \\varepsilon ^{-2}$</annotation>\n </semantics></math>. Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22123","citationCount":"14","resultStr":"{\"title\":\"Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations\",\"authors\":\"Jacob Bedrossian,&nbsp;Roberta Bianchini,&nbsp;Michele Coti Zelati,&nbsp;Michele Dolce\",\"doi\":\"10.1002/cpa.22123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O(t^{-1/2})$</annotation>\\n </semantics></math> inviscid damping while the vorticity and density gradient grow as <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O(t^{1/2})$</annotation>\\n </semantics></math>. The result holds at least until the natural, nonlinear timescale <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≈</mo>\\n <msup>\\n <mi>ε</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$t \\\\approx \\\\varepsilon ^{-2}$</annotation>\\n </semantics></math>. Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22123\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22123\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22123","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了在稳定分层Couette流附近的二维无粘性Boussinesq方程的长时间性质,对于大小为ε的初始Gevrey扰动。在Richardson数上的经典Miles‐Howard稳定性条件下,我们证明了系统经历剪切浮力不稳定性:密度变化和速度经历O(t−1/2)$O(t^{-1/2})$无粘性阻尼,而涡度和密度梯度随着O(t1/2)$O。该结果至少持续到自然非线性时间尺度t≈ε−2$t\approx\varepsilon^{-2}$。请注意,密度的行为与被动标量非常不同,这可以从无粘性阻尼和较慢的梯度增长中看出。证明依赖于几个因素:(A)适当的对称性,使线性项服从能量方法,并考虑经典的Miles‐Howard谱稳定性条件;(B) 针对在适用于Boussinesq方程的玩具模型上开发的无粘性齐次Couette流问题,引入了傅立叶时间相关能量方法的一种变体,即跟踪对称变量中的潜在非线性回波链,尽管涡度增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear inviscid damping and shear-buoyancy instability in the two-dimensional Boussinesq equations

We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size ε. Under the classical Miles-Howard stability condition on the Richardson number, we prove that the system experiences a shear-buoyancy instability: the density variation and velocity undergo an O ( t 1 / 2 ) $O(t^{-1/2})$ inviscid damping while the vorticity and density gradient grow as O ( t 1 / 2 ) $O(t^{1/2})$ . The result holds at least until the natural, nonlinear timescale t ε 2 $t \approx \varepsilon ^{-2}$ . Notice that the density behaves very differently from a passive scalar, as can be seen from the inviscid damping and slower gradient growth. The proof relies on several ingredients: (A) a suitable symmetrization that makes the linear terms amenable to energy methods and takes into account the classical Miles-Howard spectral stability condition; (B) a variation of the Fourier time-dependent energy method introduced for the inviscid, homogeneous Couette flow problem developed on a toy model adapted to the Boussinesq equations, that is, tracking the potential nonlinear echo chains in the symmetrized variables despite the vorticity growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信