{"title":"四种废生物质的热解及其反应动力学和热解产物的阐明","authors":"Wenliang Zhou, Qizhao Lin","doi":"10.1080/13647830.2022.2136039","DOIUrl":null,"url":null,"abstract":"With the increase of bioenergy crops and the rapid development of agriculture, the total amount of solid waste is increasing rapidly. This study quantified the pyrolytic performance and gaseous products of spent coffee grounds (SCG), Chinese medicine residue (CMR), vinasse (VI) and camellia oil shell (COS) by using (derivative) thermogravimetric ((D)TG), Fourier transform infrared spectrometry (FTIR) and mass spectrometry (MS) analyses. There are two main stages of mass loss: volatilisation of volatiles and continuous decomposition of macromolecules. At a heating rate of 20°C/min, COS has the slowest pyrolysis rate compared to the other three. Model-free methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) were used to calculate the activation energy (E) of samples with different conversion rates (α). SCG and VI have the highest average activation energy (about 240kJ/mol), followed by CMR (200kJ/mol), and COS the lowest (175kJ/mol). FTIR was mainly used to detect functional group types (including hydroxyl, carbonyl, aldehyde and ester groups, etc.), while MS co-detected the characteristics of condensable/non-condensable gases (including H2O, CO2, NOx, SOx, C6H6, C7H8, C9H8 and other major gas emissions, pollutants and hydrocarbons). Nitrogen oxides are produced in the range of 500–800°C. SCG and VI emit more gas pollutants than CMR and COS.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pyrolysis of four waste biomasses and elucidation of reaction kinetics and pyrolytic products\",\"authors\":\"Wenliang Zhou, Qizhao Lin\",\"doi\":\"10.1080/13647830.2022.2136039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of bioenergy crops and the rapid development of agriculture, the total amount of solid waste is increasing rapidly. This study quantified the pyrolytic performance and gaseous products of spent coffee grounds (SCG), Chinese medicine residue (CMR), vinasse (VI) and camellia oil shell (COS) by using (derivative) thermogravimetric ((D)TG), Fourier transform infrared spectrometry (FTIR) and mass spectrometry (MS) analyses. There are two main stages of mass loss: volatilisation of volatiles and continuous decomposition of macromolecules. At a heating rate of 20°C/min, COS has the slowest pyrolysis rate compared to the other three. Model-free methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) were used to calculate the activation energy (E) of samples with different conversion rates (α). SCG and VI have the highest average activation energy (about 240kJ/mol), followed by CMR (200kJ/mol), and COS the lowest (175kJ/mol). FTIR was mainly used to detect functional group types (including hydroxyl, carbonyl, aldehyde and ester groups, etc.), while MS co-detected the characteristics of condensable/non-condensable gases (including H2O, CO2, NOx, SOx, C6H6, C7H8, C9H8 and other major gas emissions, pollutants and hydrocarbons). Nitrogen oxides are produced in the range of 500–800°C. SCG and VI emit more gas pollutants than CMR and COS.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2136039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2136039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Pyrolysis of four waste biomasses and elucidation of reaction kinetics and pyrolytic products
With the increase of bioenergy crops and the rapid development of agriculture, the total amount of solid waste is increasing rapidly. This study quantified the pyrolytic performance and gaseous products of spent coffee grounds (SCG), Chinese medicine residue (CMR), vinasse (VI) and camellia oil shell (COS) by using (derivative) thermogravimetric ((D)TG), Fourier transform infrared spectrometry (FTIR) and mass spectrometry (MS) analyses. There are two main stages of mass loss: volatilisation of volatiles and continuous decomposition of macromolecules. At a heating rate of 20°C/min, COS has the slowest pyrolysis rate compared to the other three. Model-free methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) were used to calculate the activation energy (E) of samples with different conversion rates (α). SCG and VI have the highest average activation energy (about 240kJ/mol), followed by CMR (200kJ/mol), and COS the lowest (175kJ/mol). FTIR was mainly used to detect functional group types (including hydroxyl, carbonyl, aldehyde and ester groups, etc.), while MS co-detected the characteristics of condensable/non-condensable gases (including H2O, CO2, NOx, SOx, C6H6, C7H8, C9H8 and other major gas emissions, pollutants and hydrocarbons). Nitrogen oxides are produced in the range of 500–800°C. SCG and VI emit more gas pollutants than CMR and COS.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.