{"title":"使用非对称损失函数的i型混合xgamma分布的贝叶斯估计","authors":"A. Yadav","doi":"10.18187/pjsor.v19i1.2808","DOIUrl":null,"url":null,"abstract":"This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been obtained by assuming informative and non-informative priors using general entropy loss function. Obviously, censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence interval and highest posterior density interval along with the width of the interval and coverage probability are also discussed. The maximum likelihood estimate for the same has also been computed using non- linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample space and corresponding length of the interval. lastly, one medical data set has been considered for the real application of the proposed study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian estimation for the type-I hybrid xgamma distribution using asymmetric loss function\",\"authors\":\"A. Yadav\",\"doi\":\"10.18187/pjsor.v19i1.2808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been obtained by assuming informative and non-informative priors using general entropy loss function. Obviously, censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence interval and highest posterior density interval along with the width of the interval and coverage probability are also discussed. The maximum likelihood estimate for the same has also been computed using non- linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample space and corresponding length of the interval. lastly, one medical data set has been considered for the real application of the proposed study.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v19i1.2808\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v19i1.2808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian estimation for the type-I hybrid xgamma distribution using asymmetric loss function
This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been obtained by assuming informative and non-informative priors using general entropy loss function. Obviously, censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence interval and highest posterior density interval along with the width of the interval and coverage probability are also discussed. The maximum likelihood estimate for the same has also been computed using non- linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample space and corresponding length of the interval. lastly, one medical data set has been considered for the real application of the proposed study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.