风险规避多目标决策的软最大化方法

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Benjamin J. Smith, Robert Klassert, Roland Pihlakas
{"title":"风险规避多目标决策的软最大化方法","authors":"Benjamin J. Smith,&nbsp;Robert Klassert,&nbsp;Roland Pihlakas","doi":"10.1007/s10458-022-09586-2","DOIUrl":null,"url":null,"abstract":"<div><p>Balancing multiple competing and conflicting objectives is an essential task for any artificial intelligence tasked with satisfying human values or preferences. Conflict arises both from misalignment between individuals with competing values, but also between conflicting value systems held by a single human. Starting with principle of loss-aversion, we designed a set of soft maximin function approaches to multi-objective decision-making. Bench-marking these functions in a set of previously-developed environments, we found that one new approach in particular, ‘split-function exp-log loss aversion’ (SFELLA), learns faster than the state of the art thresholded alignment objective method Vamplew (Engineering Applications of Artificial Intelligenceg 100:104186, 2021) on three of four tasks it was tested on, and achieved the same optimal performance after learning. SFELLA also showed relative robustness improvements against changes in objective scale, which may highlight an advantage dealing with distribution shifts in the environment dynamics. We further compared SFELLA to the multi-objective reward exponentials (MORE) approach, and found that SFELLA performs similarly to MORE in a simple previously-described foraging task, but in a modified foraging environment with a new resource that was not depleted as the agent worked, SFELLA collected more of the new resource with very little cost incurred in terms of the old resource. Overall, we found SFELLA useful for avoiding problems that sometimes occur with a thresholded approach, and more reward-responsive than MORE while retaining its conservative, loss-averse incentive structure.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-022-09586-2.pdf","citationCount":"2","resultStr":"{\"title\":\"Using soft maximin for risk averse multi-objective decision-making\",\"authors\":\"Benjamin J. Smith,&nbsp;Robert Klassert,&nbsp;Roland Pihlakas\",\"doi\":\"10.1007/s10458-022-09586-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Balancing multiple competing and conflicting objectives is an essential task for any artificial intelligence tasked with satisfying human values or preferences. Conflict arises both from misalignment between individuals with competing values, but also between conflicting value systems held by a single human. Starting with principle of loss-aversion, we designed a set of soft maximin function approaches to multi-objective decision-making. Bench-marking these functions in a set of previously-developed environments, we found that one new approach in particular, ‘split-function exp-log loss aversion’ (SFELLA), learns faster than the state of the art thresholded alignment objective method Vamplew (Engineering Applications of Artificial Intelligenceg 100:104186, 2021) on three of four tasks it was tested on, and achieved the same optimal performance after learning. SFELLA also showed relative robustness improvements against changes in objective scale, which may highlight an advantage dealing with distribution shifts in the environment dynamics. We further compared SFELLA to the multi-objective reward exponentials (MORE) approach, and found that SFELLA performs similarly to MORE in a simple previously-described foraging task, but in a modified foraging environment with a new resource that was not depleted as the agent worked, SFELLA collected more of the new resource with very little cost incurred in terms of the old resource. Overall, we found SFELLA useful for avoiding problems that sometimes occur with a thresholded approach, and more reward-responsive than MORE while retaining its conservative, loss-averse incentive structure.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-022-09586-2.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-022-09586-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-022-09586-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

平衡多个相互竞争和冲突的目标是任何旨在满足人类价值观或偏好的人工智能的重要任务。冲突既源于具有竞争价值观的个人之间的错位,也源于单个人持有的相互冲突的价值体系之间的错位。从损失规避原理出发,设计了一套软最大化函数的多目标决策方法。在一组先前开发的环境中对这些函数进行了基准测试,我们发现一种新的方法,特别是“分裂函数exp log loss avoidance”(SFELLA),在测试的四个任务中的三个任务上,比现有的阈值对齐目标方法Vamplew(人工智能工程应用g 100:1041862021)学习得更快,并且在学习之后获得了相同的最优性能。SFELLA还显示出对目标规模变化的相对鲁棒性改进,这可能突出了处理环境动力学分布变化的优势。我们进一步将SFELLA与多目标奖励指数(MORE)方法进行了比较,发现SFELLA在之前描述的简单觅食任务中的表现与MORE相似,但在一个新资源没有随着代理的工作而耗尽的改良觅食环境中,SFELLA收集了更多的新资源,而旧资源的成本非常低。总的来说,我们发现SFELLA有助于避免阈值方法有时出现的问题,并且在保持其保守、规避损失的激励结构的同时,比more更能响应奖励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using soft maximin for risk averse multi-objective decision-making

Using soft maximin for risk averse multi-objective decision-making

Balancing multiple competing and conflicting objectives is an essential task for any artificial intelligence tasked with satisfying human values or preferences. Conflict arises both from misalignment between individuals with competing values, but also between conflicting value systems held by a single human. Starting with principle of loss-aversion, we designed a set of soft maximin function approaches to multi-objective decision-making. Bench-marking these functions in a set of previously-developed environments, we found that one new approach in particular, ‘split-function exp-log loss aversion’ (SFELLA), learns faster than the state of the art thresholded alignment objective method Vamplew (Engineering Applications of Artificial Intelligenceg 100:104186, 2021) on three of four tasks it was tested on, and achieved the same optimal performance after learning. SFELLA also showed relative robustness improvements against changes in objective scale, which may highlight an advantage dealing with distribution shifts in the environment dynamics. We further compared SFELLA to the multi-objective reward exponentials (MORE) approach, and found that SFELLA performs similarly to MORE in a simple previously-described foraging task, but in a modified foraging environment with a new resource that was not depleted as the agent worked, SFELLA collected more of the new resource with very little cost incurred in terms of the old resource. Overall, we found SFELLA useful for avoiding problems that sometimes occur with a thresholded approach, and more reward-responsive than MORE while retaining its conservative, loss-averse incentive structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信