Qi Zhang, Yuan Kong, Yang Ge, Yao Zhang, Junwei Liang, J. Chen, Hangxiang Wang, Quanhong Ma, Jiancheng Zhou
{"title":"ni2o3修饰SrTiO3增强可见光光催化CO2还原活性","authors":"Qi Zhang, Yuan Kong, Yang Ge, Yao Zhang, Junwei Liang, J. Chen, Hangxiang Wang, Quanhong Ma, Jiancheng Zhou","doi":"10.1117/1.JPE.12.046501","DOIUrl":null,"url":null,"abstract":"Abstract. Low-cost and effective cocatalyst Ni2O3 was loaded on SrTiO3 (STO) via a simple one-step hydrothermal method. The Ni2O3 / SrTiO3 ( m ) photocatalysts were systematically characterized and applied to visible-light-driven CO2 reduction to investigate their photocatalytic activity. The series of the Ni2O3-modified SrTiO3 photocatalysts presented an improved photocatalytic activity and stability. Here, the N5.4STO ( m ) catalyst showed the best photocatalytic activity, with CO and CH4 yielding up to 11.57 and 1.51 μmol / g, respectively, under visible-light irradiation of 3 h, which were 3.15 and 14.84 times higher than that of pure STO(m), respectively. Based on the characterization and experimental results, the enhanced photocatalytic activity might be attributed to the following reasons: (1) Ni2O3 well dispersed on SrTiO3 served as CO2 attachment sites; (2) the modification of Ni2O3 could red shift the absorption edge and broaden the visible-light response ability; and (3) Ni2O3 nanoparticles act as electron traps to capture photogenerated electrons, effectively blocking the recombination of electron–hole pairs. The work offers important insights into the design of non-noble metal oxide cocatalyst modified photocatalysts for electron capture and photoreduction.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"046501 - 046501"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni2O3-modified SrTiO3 for enhanced visible-light photocatalytic CO2 reduction activity\",\"authors\":\"Qi Zhang, Yuan Kong, Yang Ge, Yao Zhang, Junwei Liang, J. Chen, Hangxiang Wang, Quanhong Ma, Jiancheng Zhou\",\"doi\":\"10.1117/1.JPE.12.046501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Low-cost and effective cocatalyst Ni2O3 was loaded on SrTiO3 (STO) via a simple one-step hydrothermal method. The Ni2O3 / SrTiO3 ( m ) photocatalysts were systematically characterized and applied to visible-light-driven CO2 reduction to investigate their photocatalytic activity. The series of the Ni2O3-modified SrTiO3 photocatalysts presented an improved photocatalytic activity and stability. Here, the N5.4STO ( m ) catalyst showed the best photocatalytic activity, with CO and CH4 yielding up to 11.57 and 1.51 μmol / g, respectively, under visible-light irradiation of 3 h, which were 3.15 and 14.84 times higher than that of pure STO(m), respectively. Based on the characterization and experimental results, the enhanced photocatalytic activity might be attributed to the following reasons: (1) Ni2O3 well dispersed on SrTiO3 served as CO2 attachment sites; (2) the modification of Ni2O3 could red shift the absorption edge and broaden the visible-light response ability; and (3) Ni2O3 nanoparticles act as electron traps to capture photogenerated electrons, effectively blocking the recombination of electron–hole pairs. The work offers important insights into the design of non-noble metal oxide cocatalyst modified photocatalysts for electron capture and photoreduction.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"12 1\",\"pages\":\"046501 - 046501\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.12.046501\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.046501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ni2O3-modified SrTiO3 for enhanced visible-light photocatalytic CO2 reduction activity
Abstract. Low-cost and effective cocatalyst Ni2O3 was loaded on SrTiO3 (STO) via a simple one-step hydrothermal method. The Ni2O3 / SrTiO3 ( m ) photocatalysts were systematically characterized and applied to visible-light-driven CO2 reduction to investigate their photocatalytic activity. The series of the Ni2O3-modified SrTiO3 photocatalysts presented an improved photocatalytic activity and stability. Here, the N5.4STO ( m ) catalyst showed the best photocatalytic activity, with CO and CH4 yielding up to 11.57 and 1.51 μmol / g, respectively, under visible-light irradiation of 3 h, which were 3.15 and 14.84 times higher than that of pure STO(m), respectively. Based on the characterization and experimental results, the enhanced photocatalytic activity might be attributed to the following reasons: (1) Ni2O3 well dispersed on SrTiO3 served as CO2 attachment sites; (2) the modification of Ni2O3 could red shift the absorption edge and broaden the visible-light response ability; and (3) Ni2O3 nanoparticles act as electron traps to capture photogenerated electrons, effectively blocking the recombination of electron–hole pairs. The work offers important insights into the design of non-noble metal oxide cocatalyst modified photocatalysts for electron capture and photoreduction.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.