{"title":"黎曼接触几何综述","authors":"D. Blair","doi":"10.1515/coma-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract This survey is a presentation of the five lectures on Riemannian contact geometry that the author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia. The author was particularly pleased to be asked to give this presentation and appreciated the organizers’ kindness in dedicating the conference to him. Georges Reeb once made the comment that the mere existence of a contact form on a manifold should in some sense “tighten up” the manifold. The statement seemed quite pertinent for a conference that brought together both geometers and topologists working on contact manifolds, whether in terms of “tight” vs. “overtwisted” or whether an associated metric should have some positive curvature. The first section will lay down the basic definitions and examples of the subject of contact metric manifolds. The second section will be a continuation of the first discussing tangent sphere bundles, contact structures on 3-dimensional Lie groups and a brief treatment of submanifolds. Section III will be devoted to the curvature of contact metric manifolds. Section IV will discuss complex contact manifolds and some older style topology. Section V treats curvature functionals and Ricci solitons. A sixth section has been added giving a discussion of the question of whether a Riemannian metric g can be an associated metric for more than one contact structure; at the conference this was an addendum to the third lecture.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"31 - 64"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0002","citationCount":"11","resultStr":"{\"title\":\"A Survey of Riemannian Contact Geometry\",\"authors\":\"D. Blair\",\"doi\":\"10.1515/coma-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This survey is a presentation of the five lectures on Riemannian contact geometry that the author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia. The author was particularly pleased to be asked to give this presentation and appreciated the organizers’ kindness in dedicating the conference to him. Georges Reeb once made the comment that the mere existence of a contact form on a manifold should in some sense “tighten up” the manifold. The statement seemed quite pertinent for a conference that brought together both geometers and topologists working on contact manifolds, whether in terms of “tight” vs. “overtwisted” or whether an associated metric should have some positive curvature. The first section will lay down the basic definitions and examples of the subject of contact metric manifolds. The second section will be a continuation of the first discussing tangent sphere bundles, contact structures on 3-dimensional Lie groups and a brief treatment of submanifolds. Section III will be devoted to the curvature of contact metric manifolds. Section IV will discuss complex contact manifolds and some older style topology. Section V treats curvature functionals and Ricci solitons. A sixth section has been added giving a discussion of the question of whether a Riemannian metric g can be an associated metric for more than one contact structure; at the conference this was an addendum to the third lecture.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"31 - 64\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0002\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract This survey is a presentation of the five lectures on Riemannian contact geometry that the author gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia. The author was particularly pleased to be asked to give this presentation and appreciated the organizers’ kindness in dedicating the conference to him. Georges Reeb once made the comment that the mere existence of a contact form on a manifold should in some sense “tighten up” the manifold. The statement seemed quite pertinent for a conference that brought together both geometers and topologists working on contact manifolds, whether in terms of “tight” vs. “overtwisted” or whether an associated metric should have some positive curvature. The first section will lay down the basic definitions and examples of the subject of contact metric manifolds. The second section will be a continuation of the first discussing tangent sphere bundles, contact structures on 3-dimensional Lie groups and a brief treatment of submanifolds. Section III will be devoted to the curvature of contact metric manifolds. Section IV will discuss complex contact manifolds and some older style topology. Section V treats curvature functionals and Ricci solitons. A sixth section has been added giving a discussion of the question of whether a Riemannian metric g can be an associated metric for more than one contact structure; at the conference this was an addendum to the third lecture.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.