3-JACK多项式与杨-巴克斯特方程

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Na Wang
{"title":"3-JACK多项式与杨-巴克斯特方程","authors":"Na Wang","doi":"10.1016/S0034-4877(23)00012-5","DOIUrl":null,"url":null,"abstract":"<div><p>Every slice of a 3D Young diagram on the plane <em>z = n</em> in the coordinate system <em>O - xyz</em> is a 2D Young diagram. In this paper, we show how Jack polynomials of 2D Young diagrams constitute a Jack polynomial of 3D Young diagram, which is called 3-Jack polynomial. We give the specific expressions of 3-Jack polynomials of 3D Young diagrams of total box number less than 4, and we find a method to obtain 3-Jack polynomials for every 3D Young diagram. 3-Jack polynomials become Jack polynomials of 2D Young diagrams when 3D Young diagrams have only one layer in the <em>z</em>-axis direction.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"91 1","pages":"Pages 79-102"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3-JACK POLYNOMIALS AND YANG--BAXTER EQUATION\",\"authors\":\"Na Wang\",\"doi\":\"10.1016/S0034-4877(23)00012-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Every slice of a 3D Young diagram on the plane <em>z = n</em> in the coordinate system <em>O - xyz</em> is a 2D Young diagram. In this paper, we show how Jack polynomials of 2D Young diagrams constitute a Jack polynomial of 3D Young diagram, which is called 3-Jack polynomial. We give the specific expressions of 3-Jack polynomials of 3D Young diagrams of total box number less than 4, and we find a method to obtain 3-Jack polynomials for every 3D Young diagram. 3-Jack polynomials become Jack polynomials of 2D Young diagrams when 3D Young diagrams have only one layer in the <em>z</em>-axis direction.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"91 1\",\"pages\":\"Pages 79-102\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487723000125\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000125","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

摘要

在坐标系O - xyz平面z = n上的三维杨氏图的每个切片都是二维杨氏图。本文给出了二维杨氏图的杰克多项式如何构成三维杨氏图的杰克多项式,称为3-杰克多项式。给出了总箱数小于4的三维杨图的3-Jack多项式的具体表达式,并找到了求每个三维杨图的3-Jack多项式的方法。当三维Young图在z轴方向上只有一层时,3-Jack多项式成为二维Young图的Jack多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-JACK POLYNOMIALS AND YANG--BAXTER EQUATION

Every slice of a 3D Young diagram on the plane z = n in the coordinate system O - xyz is a 2D Young diagram. In this paper, we show how Jack polynomials of 2D Young diagrams constitute a Jack polynomial of 3D Young diagram, which is called 3-Jack polynomial. We give the specific expressions of 3-Jack polynomials of 3D Young diagrams of total box number less than 4, and we find a method to obtain 3-Jack polynomials for every 3D Young diagram. 3-Jack polynomials become Jack polynomials of 2D Young diagrams when 3D Young diagrams have only one layer in the z-axis direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信