圆和循环的四元数乘积和圆对的八元数乘积

IF 0.4 Q4 MATHEMATICS
M. Crasmareanu
{"title":"圆和循环的四元数乘积和圆对的八元数乘积","authors":"M. Crasmareanu","doi":"10.52547/ijmsi.17.1.227","DOIUrl":null,"url":null,"abstract":". This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given products are proposed.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles\",\"authors\":\"M. Crasmareanu\",\"doi\":\"10.52547/ijmsi.17.1.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given products are proposed.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ijmsi.17.1.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了以投影方式考虑的四元数乘积所引起的圆的乘积。导出了这个组成定律的几个性质,通过这种方法,我们得到了一些特殊的数作为单位的根或幂。我们使用八元代数将这个乘积推广到作为有向圆的循环和成对的圆。提出了给定产品的三个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles
. This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given products are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信