利用产生双加氧酶的基因工程恶臭假单胞菌降解土壤中的头孢曲松

IF 1.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
G. Mardani, M. Ahankoub, Mahdiyeh Alikhani Faradonbeh, H. Raeisi Shahraki, A. Fadaei
{"title":"利用产生双加氧酶的基因工程恶臭假单胞菌降解土壤中的头孢曲松","authors":"G. Mardani, M. Ahankoub, Mahdiyeh Alikhani Faradonbeh, H. Raeisi Shahraki, A. Fadaei","doi":"10.1080/10889868.2022.2057412","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the degradability of the antibiotic Ceftriaxone was investigated with the help of genetically engineered Pseudomonas putida, in which the gene producing the enzyme catechol 2 and 3 dioxygenase was designed and then inserted into the pUC18 plasmid and replicated by E. coli. It was purified and extracted and transformed into Pseudomonas putida. Finally, the degradation rate of Ceftriaxone by this bacterium in spiked soil was evaluated using the HPLC measurement technique. Finally, the kinetics of Ceftriaxone degradation by genetically engineered Pseudomonas putida was investigated using zero, first, and second –order kinetic models for all factors. The results of HPLC measurement showed that the biodegradation of ceftriaxone in spiked soil was significant by genetically engineered P. putida compared to autoclaved soil inoculated by wild P. putida and normal soil with normal microbial flora (p < 0.001) and this bacterium was able to degrade ceftriaxone by 69.53% and kinetic modeling showed that the rate of removal by genetically engineered Pseudomonas putida follows the zero-degree reaction model. These findings indicate that Pseudomonas putida, which produces Catechol 2,3-dioxygenase, can be useful and practical in the biological treatment of environment from cephalosporins.","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida\",\"authors\":\"G. Mardani, M. Ahankoub, Mahdiyeh Alikhani Faradonbeh, H. Raeisi Shahraki, A. Fadaei\",\"doi\":\"10.1080/10889868.2022.2057412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the degradability of the antibiotic Ceftriaxone was investigated with the help of genetically engineered Pseudomonas putida, in which the gene producing the enzyme catechol 2 and 3 dioxygenase was designed and then inserted into the pUC18 plasmid and replicated by E. coli. It was purified and extracted and transformed into Pseudomonas putida. Finally, the degradation rate of Ceftriaxone by this bacterium in spiked soil was evaluated using the HPLC measurement technique. Finally, the kinetics of Ceftriaxone degradation by genetically engineered Pseudomonas putida was investigated using zero, first, and second –order kinetic models for all factors. The results of HPLC measurement showed that the biodegradation of ceftriaxone in spiked soil was significant by genetically engineered P. putida compared to autoclaved soil inoculated by wild P. putida and normal soil with normal microbial flora (p < 0.001) and this bacterium was able to degrade ceftriaxone by 69.53% and kinetic modeling showed that the rate of removal by genetically engineered Pseudomonas putida follows the zero-degree reaction model. These findings indicate that Pseudomonas putida, which produces Catechol 2,3-dioxygenase, can be useful and practical in the biological treatment of environment from cephalosporins.\",\"PeriodicalId\":8935,\"journal\":{\"name\":\"Bioremediation Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioremediation Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10889868.2022.2057412\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10889868.2022.2057412","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida
Abstract In this study, the degradability of the antibiotic Ceftriaxone was investigated with the help of genetically engineered Pseudomonas putida, in which the gene producing the enzyme catechol 2 and 3 dioxygenase was designed and then inserted into the pUC18 plasmid and replicated by E. coli. It was purified and extracted and transformed into Pseudomonas putida. Finally, the degradation rate of Ceftriaxone by this bacterium in spiked soil was evaluated using the HPLC measurement technique. Finally, the kinetics of Ceftriaxone degradation by genetically engineered Pseudomonas putida was investigated using zero, first, and second –order kinetic models for all factors. The results of HPLC measurement showed that the biodegradation of ceftriaxone in spiked soil was significant by genetically engineered P. putida compared to autoclaved soil inoculated by wild P. putida and normal soil with normal microbial flora (p < 0.001) and this bacterium was able to degrade ceftriaxone by 69.53% and kinetic modeling showed that the rate of removal by genetically engineered Pseudomonas putida follows the zero-degree reaction model. These findings indicate that Pseudomonas putida, which produces Catechol 2,3-dioxygenase, can be useful and practical in the biological treatment of environment from cephalosporins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioremediation Journal
Bioremediation Journal ENVIRONMENTAL SCIENCES-
CiteScore
5.30
自引率
0.00%
发文量
36
审稿时长
9 months
期刊介绍: Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide. High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信