纳米粘土填充形状记忆聚合物的双尺度建模

Q3 Engineering
M. Salman, V. Guski, S. Schmauder
{"title":"纳米粘土填充形状记忆聚合物的双尺度建模","authors":"M. Salman, V. Guski, S. Schmauder","doi":"10.1142/s242491302142011x","DOIUrl":null,"url":null,"abstract":"Shape memory polymers (SMPs) are introduced as polymers that have the ability to return to their early programmed shape after exposure to an external stimulus. Enhancement of the material with nano-clay filler has improved its thermomechanical properties and increased the range of its applications in many fields of industry. Due to the tiny size of filler and the heterogeneous nature of the material structure at different scale levels, characterizing the material’s thermomechanical flow using conventional experimental equipment is a far-fetched task. Furthermore, providing one numerical model that is able to simulate the material thermomechanical behavior by including all the effects of the lower scale material structure is also very hard. In this study, a two-scale modeling approach is developed by a combination of the numerical homogenization scheme, 3D Representative Volume Element (RVE) concept, and finite element method. The effects of the filler weight fractions on the overall effective elastic constants as well as the material flow under a finite deformation are investigated. The resulting elastic constants and the stress–strain curves show a fairly good agreement with the analytical results. Furthermore, all the investigated results provide a deep understanding of the material behavior and a starting point for the next higher scale level modeling approaches.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two-scale modeling of nano-clay-filled shape memory polymers\",\"authors\":\"M. Salman, V. Guski, S. Schmauder\",\"doi\":\"10.1142/s242491302142011x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape memory polymers (SMPs) are introduced as polymers that have the ability to return to their early programmed shape after exposure to an external stimulus. Enhancement of the material with nano-clay filler has improved its thermomechanical properties and increased the range of its applications in many fields of industry. Due to the tiny size of filler and the heterogeneous nature of the material structure at different scale levels, characterizing the material’s thermomechanical flow using conventional experimental equipment is a far-fetched task. Furthermore, providing one numerical model that is able to simulate the material thermomechanical behavior by including all the effects of the lower scale material structure is also very hard. In this study, a two-scale modeling approach is developed by a combination of the numerical homogenization scheme, 3D Representative Volume Element (RVE) concept, and finite element method. The effects of the filler weight fractions on the overall effective elastic constants as well as the material flow under a finite deformation are investigated. The resulting elastic constants and the stress–strain curves show a fairly good agreement with the analytical results. Furthermore, all the investigated results provide a deep understanding of the material behavior and a starting point for the next higher scale level modeling approaches.\",\"PeriodicalId\":36070,\"journal\":{\"name\":\"Journal of Micromechanics and Molecular Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s242491302142011x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s242491302142011x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

形状记忆聚合物(SMPs)是一种能够在暴露于外部刺激后恢复其早期编程形状的聚合物。纳米粘土填料对材料的增强,改善了材料的热机械性能,扩大了材料在许多工业领域的应用范围。由于填料的微小尺寸和材料结构在不同尺度上的异质性,用传统的实验设备来表征材料的热机械流动是一项牵强的任务。此外,提供一个能够通过包括低尺度材料结构的所有影响来模拟材料热力学行为的数值模型也是非常困难的。本研究将数值均匀化方案、三维代表性体积单元(RVE)概念和有限元方法相结合,提出了一种双尺度建模方法。研究了填料质量分数对材料整体有效弹性常数和有限变形下材料流动的影响。计算得到的弹性常数和应力-应变曲线与分析结果吻合较好。此外,所有的研究结果都提供了对材料行为的深刻理解,并为下一个更高尺度的建模方法提供了起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-scale modeling of nano-clay-filled shape memory polymers
Shape memory polymers (SMPs) are introduced as polymers that have the ability to return to their early programmed shape after exposure to an external stimulus. Enhancement of the material with nano-clay filler has improved its thermomechanical properties and increased the range of its applications in many fields of industry. Due to the tiny size of filler and the heterogeneous nature of the material structure at different scale levels, characterizing the material’s thermomechanical flow using conventional experimental equipment is a far-fetched task. Furthermore, providing one numerical model that is able to simulate the material thermomechanical behavior by including all the effects of the lower scale material structure is also very hard. In this study, a two-scale modeling approach is developed by a combination of the numerical homogenization scheme, 3D Representative Volume Element (RVE) concept, and finite element method. The effects of the filler weight fractions on the overall effective elastic constants as well as the material flow under a finite deformation are investigated. The resulting elastic constants and the stress–strain curves show a fairly good agreement with the analytical results. Furthermore, all the investigated results provide a deep understanding of the material behavior and a starting point for the next higher scale level modeling approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信