热压过程中压力和铬质量分数对铜铬复合材料力学性能和电导率的影响分析

Q4 Materials Science
Dicki Nizar Zulfika, W. Widyastuti, L. Noerochim, Nanda Hendra Pratama, Subardi Marjali, I. Maulana, R. Ikono, N. Rochman
{"title":"热压过程中压力和铬质量分数对铜铬复合材料力学性能和电导率的影响分析","authors":"Dicki Nizar Zulfika, W. Widyastuti, L. Noerochim, Nanda Hendra Pratama, Subardi Marjali, I. Maulana, R. Ikono, N. Rochman","doi":"10.1504/IJMMP.2019.10021504","DOIUrl":null,"url":null,"abstract":"Cu-Cr composite is used in the electronic industry as a material which is directly connected to the electricity, as a component of a circuit breaker, cable contact, circuit board, etc. In this study, hot compaction method was employed to manufacture Cu-Cr composite which has excellent hardness and electrical conductivity. Composite manufacturing was based on powder metallurgy technique while mixing used mechanical milling method in regards to its better homogeneity. Hot compaction process set at the temperature of 300°C was applied to the powder material to increase the plasticity so the compaction can be done easier. Some variation was made on the composition of Cu : Cr ratio (90 : 10, 80 : 20, 70 : 30, and 60 : 40), and the compaction pressure (500, 700, and 1000 MPa). Sintering was conducted at 85°C with holding time of 1 h. Based on the results, the optimum sintering density of 96.81% of its theoretical density was obtained at Cu : Cr ratio as of 80 : 20. Maximum hardness at 60%Cu : 40%Cr and P = 1000 MPa was 129 VHN. And, electrical conductivity was reached its optimum value of 82.6% IACS when the Cu:Cr ratio was 90:10 at P = 1000 MPa.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on the effect of pressure and mass fraction of chromium to mechanical properties and electrical conductivity of copper-chromium composite in hot compaction process\",\"authors\":\"Dicki Nizar Zulfika, W. Widyastuti, L. Noerochim, Nanda Hendra Pratama, Subardi Marjali, I. Maulana, R. Ikono, N. Rochman\",\"doi\":\"10.1504/IJMMP.2019.10021504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu-Cr composite is used in the electronic industry as a material which is directly connected to the electricity, as a component of a circuit breaker, cable contact, circuit board, etc. In this study, hot compaction method was employed to manufacture Cu-Cr composite which has excellent hardness and electrical conductivity. Composite manufacturing was based on powder metallurgy technique while mixing used mechanical milling method in regards to its better homogeneity. Hot compaction process set at the temperature of 300°C was applied to the powder material to increase the plasticity so the compaction can be done easier. Some variation was made on the composition of Cu : Cr ratio (90 : 10, 80 : 20, 70 : 30, and 60 : 40), and the compaction pressure (500, 700, and 1000 MPa). Sintering was conducted at 85°C with holding time of 1 h. Based on the results, the optimum sintering density of 96.81% of its theoretical density was obtained at Cu : Cr ratio as of 80 : 20. Maximum hardness at 60%Cu : 40%Cr and P = 1000 MPa was 129 VHN. And, electrical conductivity was reached its optimum value of 82.6% IACS when the Cu:Cr ratio was 90:10 at P = 1000 MPa.\",\"PeriodicalId\":35049,\"journal\":{\"name\":\"International Journal of Microstructure and Materials Properties\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microstructure and Materials Properties\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMMP.2019.10021504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMP.2019.10021504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

Cu-Cr复合材料在电子工业中被用作直接与电连接的材料,作为断路器、电缆触头、电路板等的部件。本研究采用热压法制造了具有优异硬度和导电性的Cu-Cr复合体。复合材料的制造以粉末冶金技术为基础,而混合则采用机械铣削方法以获得更好的均匀性。在300°C的温度下对粉末材料进行热压实,以提高塑性,从而使压实更容易。对Cu:Cr比(90∶10、80∶20、70∶30和60∶40)的组成和压实压力(500、700和1000MPa)进行了一些变化。烧结在85°C下进行,保温时间为1h。根据结果,在Cu:Cr比为80:20时,获得了理论密度的96.81%的最佳烧结密度。在60%Cu:40%Cr和P=1000MPa条件下的最大硬度为129VHN。当Cu:Cr比为90:10,P=1000MPa时,电导率达到了82.6%IACS的最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on the effect of pressure and mass fraction of chromium to mechanical properties and electrical conductivity of copper-chromium composite in hot compaction process
Cu-Cr composite is used in the electronic industry as a material which is directly connected to the electricity, as a component of a circuit breaker, cable contact, circuit board, etc. In this study, hot compaction method was employed to manufacture Cu-Cr composite which has excellent hardness and electrical conductivity. Composite manufacturing was based on powder metallurgy technique while mixing used mechanical milling method in regards to its better homogeneity. Hot compaction process set at the temperature of 300°C was applied to the powder material to increase the plasticity so the compaction can be done easier. Some variation was made on the composition of Cu : Cr ratio (90 : 10, 80 : 20, 70 : 30, and 60 : 40), and the compaction pressure (500, 700, and 1000 MPa). Sintering was conducted at 85°C with holding time of 1 h. Based on the results, the optimum sintering density of 96.81% of its theoretical density was obtained at Cu : Cr ratio as of 80 : 20. Maximum hardness at 60%Cu : 40%Cr and P = 1000 MPa was 129 VHN. And, electrical conductivity was reached its optimum value of 82.6% IACS when the Cu:Cr ratio was 90:10 at P = 1000 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microstructure and Materials Properties
International Journal of Microstructure and Materials Properties Materials Science-Materials Science (all)
CiteScore
0.70
自引率
0.00%
发文量
27
期刊介绍: IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信