核苷酸切除修复基因XPA和RAD51在低剂量电离辐射下人淋巴细胞同源重组中的时间依赖性诱导

Q3 Health Professions
M. Toossi, S. Khademi, H. Azimian
{"title":"核苷酸切除修复基因XPA和RAD51在低剂量电离辐射下人淋巴细胞同源重组中的时间依赖性诱导","authors":"M. Toossi, S. Khademi, H. Azimian","doi":"10.22038/IJMP.2021.53719.1884","DOIUrl":null,"url":null,"abstract":"Introduction: The aim of the present study was to understand the effect of low-doses of ionizing radiation (LDIR) on repair genes expression in blood samples that were taken from healthy donors. The next purpose was to examine the time-effect on the modified gene expression caused by low-doses of ionizing radiation. Material and method: The RNA of peripheral blood lymphocytes (PBLs) taken from four healthy donors was isolated at different time points after exposure included 4, 24, 48, 72, and 168 hours and then cDNA was synthesized. Modification of XPA and RAD51 expression levels due to LDIR (2, 5, 10 cGy) were evaluated by relative quantitative reverse transcription-polymerase chain reaction.Results: Significant up-regulation of both repair genes was observed at the 4 and 168 h following to 10 cGy. Also, this dose could increase expression levels of RAD51 at 48 and 72 h after radiation. For lower doses at 5 cGy, only XPA levels were significantly up-regulated after 168 h. A significant regression was found between the XPA levels and the dose, at 168 h after irradiation to PBLs that can represent a new potential biomarker for biological dosimetry purposes.Conclusion: The results of this study could support the hypothetical role of the different DNA repair pathways in response to LDIR. This led us to propose a molecular biodosimetry method for ionizing radiation in the range of LDIR.","PeriodicalId":14613,"journal":{"name":"Iranian Journal of Medical Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Dependent Induction of the Nucleotide Excision Repair Gene XPA and RAD51 in Homologous Recombination in Human Lymphocytes Exposed to Low Doses of Ionizing Radiation\",\"authors\":\"M. Toossi, S. Khademi, H. Azimian\",\"doi\":\"10.22038/IJMP.2021.53719.1884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The aim of the present study was to understand the effect of low-doses of ionizing radiation (LDIR) on repair genes expression in blood samples that were taken from healthy donors. The next purpose was to examine the time-effect on the modified gene expression caused by low-doses of ionizing radiation. Material and method: The RNA of peripheral blood lymphocytes (PBLs) taken from four healthy donors was isolated at different time points after exposure included 4, 24, 48, 72, and 168 hours and then cDNA was synthesized. Modification of XPA and RAD51 expression levels due to LDIR (2, 5, 10 cGy) were evaluated by relative quantitative reverse transcription-polymerase chain reaction.Results: Significant up-regulation of both repair genes was observed at the 4 and 168 h following to 10 cGy. Also, this dose could increase expression levels of RAD51 at 48 and 72 h after radiation. For lower doses at 5 cGy, only XPA levels were significantly up-regulated after 168 h. A significant regression was found between the XPA levels and the dose, at 168 h after irradiation to PBLs that can represent a new potential biomarker for biological dosimetry purposes.Conclusion: The results of this study could support the hypothetical role of the different DNA repair pathways in response to LDIR. This led us to propose a molecular biodosimetry method for ionizing radiation in the range of LDIR.\",\"PeriodicalId\":14613,\"journal\":{\"name\":\"Iranian Journal of Medical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/IJMP.2021.53719.1884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/IJMP.2021.53719.1884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

引言:本研究的目的是了解低剂量电离辐射(LDIR)对健康献血者血液样本中修复基因表达的影响。下一个目的是研究低剂量电离辐射对修饰基因表达的时间效应。材料和方法:从4名健康献血员的外周血淋巴细胞(PBL)中分离出暴露4、24、48、72和168小时后不同时间点的RNA,然后合成cDNA。通过相对定量逆转录聚合酶链反应评估LDIR(2,5,10cGy)引起的XPA和RAD51表达水平的改变。结果:在10cGy照射后4小时和168小时,两种修复基因均显著上调。此外,该剂量可在辐射后48和72小时增加RAD51的表达水平。对于5 cGy的较低剂量,只有XPA水平在168小时后显著上调。在照射到PBL后168小时,发现XPA水平和剂量之间存在显著的回归,PBL可以代表用于生物剂量测定目的的新的潜在生物标志物。结论:本研究的结果可以支持不同DNA修复途径在LDIR反应中的假设作用。这使我们提出了一种在LDIR范围内进行电离辐射的分子生物剂量测定方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Dependent Induction of the Nucleotide Excision Repair Gene XPA and RAD51 in Homologous Recombination in Human Lymphocytes Exposed to Low Doses of Ionizing Radiation
Introduction: The aim of the present study was to understand the effect of low-doses of ionizing radiation (LDIR) on repair genes expression in blood samples that were taken from healthy donors. The next purpose was to examine the time-effect on the modified gene expression caused by low-doses of ionizing radiation. Material and method: The RNA of peripheral blood lymphocytes (PBLs) taken from four healthy donors was isolated at different time points after exposure included 4, 24, 48, 72, and 168 hours and then cDNA was synthesized. Modification of XPA and RAD51 expression levels due to LDIR (2, 5, 10 cGy) were evaluated by relative quantitative reverse transcription-polymerase chain reaction.Results: Significant up-regulation of both repair genes was observed at the 4 and 168 h following to 10 cGy. Also, this dose could increase expression levels of RAD51 at 48 and 72 h after radiation. For lower doses at 5 cGy, only XPA levels were significantly up-regulated after 168 h. A significant regression was found between the XPA levels and the dose, at 168 h after irradiation to PBLs that can represent a new potential biomarker for biological dosimetry purposes.Conclusion: The results of this study could support the hypothetical role of the different DNA repair pathways in response to LDIR. This led us to propose a molecular biodosimetry method for ionizing radiation in the range of LDIR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Medical Physics
Iranian Journal of Medical Physics Health Professions-Radiological and Ultrasound Technology
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊介绍: Iranian Journal of Medical Physics (IJMP) is the official scientific bimonthly publication of the Iranian Association of Medical Physicists. IJMP is an international and multidisciplinary journal, peer review, free of charge publication and open access. This journal devoted to publish Original Papers, Review Articles, Short Communications, Technical Notes, Editorial and Letters to the Editor in the field of “Medical Physics” involving both basic and clinical research. Submissions of manuscript from all countries are welcome and will be reviewed by at least two expert reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信