Kadison传递定理中初始数据的连续依赖性及GNS的构造

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D. Spiegel, J. Moreno, Marvin Qi, M. Hermele, A. Beaudry, M. Pflaum
{"title":"Kadison传递定理中初始数据的连续依赖性及GNS的构造","authors":"D. Spiegel, J. Moreno, Marvin Qi, M. Hermele, A. Beaudry, M. Pflaum","doi":"10.1142/S0129055X22500313","DOIUrl":null,"url":null,"abstract":"We consider how the outputs of the Kadison transitivity theorem and Gelfand-Naimark-Segal construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation $(\\mathcal{H}, \\pi)$ of a $C^*$-algebra $\\mathfrak{A}$ and $n \\in \\mathbb{N}$, there exists a continuous function $A:X \\rightarrow \\mathfrak{A}$ such that $\\pi(A(\\mathbf{x}, \\mathbf{y}))x_i = y_i$ for all $i \\in \\{1, \\ldots, n\\}$, where $X$ is the set of pairs of $n$-tuples $(\\mathbf{x}, \\mathbf{y}) \\in \\mathcal{H}^n \\times \\mathcal{H}^n$ such that the components of $\\mathbf{x}$ are linearly independent. Versions of this result where $A$ maps into the self-adjoint or unitary elements of $\\mathfrak{A}$ are also presented. Regarding the Gelfand-Naimark-Segal construction, we prove that given a topological $C^*$-algebra fiber bundle $p:\\mathfrak{A} \\rightarrow Y$, one may construct a topological fiber bundle $\\mathscr{P}(\\mathfrak{A}) \\rightarrow Y$ whose fiber over $y \\in Y$ is the space of pure states of $\\mathfrak{A}_y$ (with the norm topology), as well as bundles $\\mathscr{H} \\rightarrow \\mathscr{P}(\\mathfrak{A})$ and $\\mathscr{N} \\rightarrow \\mathscr{P}(\\mathfrak{A})$ whose fibers $\\mathscr{H}_\\omega$ and $\\mathscr{N}_\\omega$ over $\\omega \\in \\mathscr{P}(\\mathfrak{A})$ are the GNS Hilbert space and closed left ideal, respectively, corresponding to $\\omega$. When $p:\\mathfrak{A} \\rightarrow Y$ is a smooth fiber bundle, we show that $\\mathscr{P}(\\mathfrak{A}) \\rightarrow Y$ and $\\mathscr{H}\\rightarrow \\mathscr{P}(\\mathfrak{A})$ are also smooth fiber bundles; this involves proving that the group of $*$-automorphisms of a $C^*$-algebra is a Banach-Lie group. In service of these results, we review the geometry of the topology and pure state space. A simple non-interacting quantum spin system is provided as an example.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuous Dependence on the Initial Data in the Kadison Transitivity Theorem and GNS Construction\",\"authors\":\"D. Spiegel, J. Moreno, Marvin Qi, M. Hermele, A. Beaudry, M. Pflaum\",\"doi\":\"10.1142/S0129055X22500313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider how the outputs of the Kadison transitivity theorem and Gelfand-Naimark-Segal construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation $(\\\\mathcal{H}, \\\\pi)$ of a $C^*$-algebra $\\\\mathfrak{A}$ and $n \\\\in \\\\mathbb{N}$, there exists a continuous function $A:X \\\\rightarrow \\\\mathfrak{A}$ such that $\\\\pi(A(\\\\mathbf{x}, \\\\mathbf{y}))x_i = y_i$ for all $i \\\\in \\\\{1, \\\\ldots, n\\\\}$, where $X$ is the set of pairs of $n$-tuples $(\\\\mathbf{x}, \\\\mathbf{y}) \\\\in \\\\mathcal{H}^n \\\\times \\\\mathcal{H}^n$ such that the components of $\\\\mathbf{x}$ are linearly independent. Versions of this result where $A$ maps into the self-adjoint or unitary elements of $\\\\mathfrak{A}$ are also presented. Regarding the Gelfand-Naimark-Segal construction, we prove that given a topological $C^*$-algebra fiber bundle $p:\\\\mathfrak{A} \\\\rightarrow Y$, one may construct a topological fiber bundle $\\\\mathscr{P}(\\\\mathfrak{A}) \\\\rightarrow Y$ whose fiber over $y \\\\in Y$ is the space of pure states of $\\\\mathfrak{A}_y$ (with the norm topology), as well as bundles $\\\\mathscr{H} \\\\rightarrow \\\\mathscr{P}(\\\\mathfrak{A})$ and $\\\\mathscr{N} \\\\rightarrow \\\\mathscr{P}(\\\\mathfrak{A})$ whose fibers $\\\\mathscr{H}_\\\\omega$ and $\\\\mathscr{N}_\\\\omega$ over $\\\\omega \\\\in \\\\mathscr{P}(\\\\mathfrak{A})$ are the GNS Hilbert space and closed left ideal, respectively, corresponding to $\\\\omega$. When $p:\\\\mathfrak{A} \\\\rightarrow Y$ is a smooth fiber bundle, we show that $\\\\mathscr{P}(\\\\mathfrak{A}) \\\\rightarrow Y$ and $\\\\mathscr{H}\\\\rightarrow \\\\mathscr{P}(\\\\mathfrak{A})$ are also smooth fiber bundles; this involves proving that the group of $*$-automorphisms of a $C^*$-algebra is a Banach-Lie group. In service of these results, we review the geometry of the topology and pure state space. A simple non-interacting quantum spin system is provided as an example.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X22500313\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500313","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑当初始数据变化时,如何在族中得到Kadison传递性定理和Gelfand-Naimark-Segal构造的输出。更准确地说,对于Kadison传递性定理,我们证明了对于任何非零不可约表示 $(\mathcal{H}, \pi)$ 的 $C^*$-代数 $\mathfrak{A}$ 和 $n \in \mathbb{N}$,则存在连续函数 $A:X \rightarrow \mathfrak{A}$ 这样 $\pi(A(\mathbf{x}, \mathbf{y}))x_i = y_i$ 对所有人 $i \in \{1, \ldots, n\}$,其中 $X$ 对的集合是 $n$-元组 $(\mathbf{x}, \mathbf{y}) \in \mathcal{H}^n \times \mathcal{H}^n$ 使得的分量 $\mathbf{x}$ 都是线性无关的。这个版本的结果是 $A$ 映射到的自伴随元素或酉元素 $\mathfrak{A}$ 也有介绍。对于Gelfand-Naimark-Segal构造,我们证明了给定拓扑 $C^*$-代数纤维束 $p:\mathfrak{A} \rightarrow Y$,可以构造一个拓扑纤维束 $\mathscr{P}(\mathfrak{A}) \rightarrow Y$ 谁的纤维过了 $y \in Y$ 纯粹状态的空间是 $\mathfrak{A}_y$ (使用规范拓扑),以及包 $\mathscr{H} \rightarrow \mathscr{P}(\mathfrak{A})$ 和 $\mathscr{N} \rightarrow \mathscr{P}(\mathfrak{A})$ 谁的纤维 $\mathscr{H}_\omega$ 和 $\mathscr{N}_\omega$ 结束 $\omega \in \mathscr{P}(\mathfrak{A})$ GNS希尔伯特空间和闭左理想分别对应于 $\omega$。什么时候 $p:\mathfrak{A} \rightarrow Y$ 是光滑的纤维束吗 $\mathscr{P}(\mathfrak{A}) \rightarrow Y$ 和 $\mathscr{H}\rightarrow \mathscr{P}(\mathfrak{A})$ 也是光滑的纤维束;这需要证明一组 $*$-a的自同构 $C^*$代数是一个Banach-Lie群。在这些结果的服务中,我们回顾了拓扑和纯状态空间的几何。给出了一个简单的非相互作用量子自旋系统的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Dependence on the Initial Data in the Kadison Transitivity Theorem and GNS Construction
We consider how the outputs of the Kadison transitivity theorem and Gelfand-Naimark-Segal construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation $(\mathcal{H}, \pi)$ of a $C^*$-algebra $\mathfrak{A}$ and $n \in \mathbb{N}$, there exists a continuous function $A:X \rightarrow \mathfrak{A}$ such that $\pi(A(\mathbf{x}, \mathbf{y}))x_i = y_i$ for all $i \in \{1, \ldots, n\}$, where $X$ is the set of pairs of $n$-tuples $(\mathbf{x}, \mathbf{y}) \in \mathcal{H}^n \times \mathcal{H}^n$ such that the components of $\mathbf{x}$ are linearly independent. Versions of this result where $A$ maps into the self-adjoint or unitary elements of $\mathfrak{A}$ are also presented. Regarding the Gelfand-Naimark-Segal construction, we prove that given a topological $C^*$-algebra fiber bundle $p:\mathfrak{A} \rightarrow Y$, one may construct a topological fiber bundle $\mathscr{P}(\mathfrak{A}) \rightarrow Y$ whose fiber over $y \in Y$ is the space of pure states of $\mathfrak{A}_y$ (with the norm topology), as well as bundles $\mathscr{H} \rightarrow \mathscr{P}(\mathfrak{A})$ and $\mathscr{N} \rightarrow \mathscr{P}(\mathfrak{A})$ whose fibers $\mathscr{H}_\omega$ and $\mathscr{N}_\omega$ over $\omega \in \mathscr{P}(\mathfrak{A})$ are the GNS Hilbert space and closed left ideal, respectively, corresponding to $\omega$. When $p:\mathfrak{A} \rightarrow Y$ is a smooth fiber bundle, we show that $\mathscr{P}(\mathfrak{A}) \rightarrow Y$ and $\mathscr{H}\rightarrow \mathscr{P}(\mathfrak{A})$ are also smooth fiber bundles; this involves proving that the group of $*$-automorphisms of a $C^*$-algebra is a Banach-Lie group. In service of these results, we review the geometry of the topology and pure state space. A simple non-interacting quantum spin system is provided as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信