铁热盐对流扰动复增长率的上界

IF 0.7 Q4 MECHANICS
K. Ram, J. Prakash, K. Kumari, Pankaj Kumar
{"title":"铁热盐对流扰动复增长率的上界","authors":"K. Ram, J. Prakash, K. Kumari, Pankaj Kumar","doi":"10.2478/sgem-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract It is proved analytically that the complex growth rate σ= σr+iσi (σr and σi are the real and imaginary parts of σ, respectively) of an arbitrary oscillatory motion of neutral or growing amplitude in ferrothermohaline convection in a ferrofluid layer for the case of free boundaries is located inside a semicircle in the right half of the σrσi-plane, whose center is at the origin and radius = Rs[1−M1′(1−1M5)]Pr′, {\\rm{radius}}\\, = \\,\\sqrt {{{{R_s}\\left[{1 - M_1^{'}\\left({1 - {1 \\over {{M_5}}}} \\right)} \\right]} \\over {P_r^{'}}}}, where Rs is the concentration Rayleigh number, Pr′ is the solutal Prandtl number, M1′ is the ratio of magnetic flux due to concentration fluctuation to the gravitational force, and M5 is the ratio of concentration effect on magnetic field to pyromagnetic coefficient. Further, bounds for the case of rigid boundaries are also derived separately.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection\",\"authors\":\"K. Ram, J. Prakash, K. Kumari, Pankaj Kumar\",\"doi\":\"10.2478/sgem-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is proved analytically that the complex growth rate σ= σr+iσi (σr and σi are the real and imaginary parts of σ, respectively) of an arbitrary oscillatory motion of neutral or growing amplitude in ferrothermohaline convection in a ferrofluid layer for the case of free boundaries is located inside a semicircle in the right half of the σrσi-plane, whose center is at the origin and radius = Rs[1−M1′(1−1M5)]Pr′, {\\\\rm{radius}}\\\\, = \\\\,\\\\sqrt {{{{R_s}\\\\left[{1 - M_1^{'}\\\\left({1 - {1 \\\\over {{M_5}}}} \\\\right)} \\\\right]} \\\\over {P_r^{'}}}}, where Rs is the concentration Rayleigh number, Pr′ is the solutal Prandtl number, M1′ is the ratio of magnetic flux due to concentration fluctuation to the gravitational force, and M5 is the ratio of concentration effect on magnetic field to pyromagnetic coefficient. Further, bounds for the case of rigid boundaries are also derived separately.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要分析证明了在自由边界情况下,铁磁流体层中铁热盐对流中中性或增长幅度的任意振荡运动的复增长率σ=σr+iσi(σr和σi分别是σ的实部和虚部)位于σrσi平面右半部分的半圆内,其中心在原点和半径处 = Rs[1−M1′(1−1M5)]Pr′,{\rm{radius}}\,=\,\sqrt{{{R_s}\left[{1-M_1^{'}\lift({1-{1\over{M_5}}}\right)}\right]}\over{P_R^{'}}}},其中Rs是浓度瑞利数,Pr′是溶质普朗特数,M1′是由于浓度波动引起的磁通量与重力的比值,M5是对磁场的集中效应与热磁系数的比值。此外,还分别推导了刚性边界情况下的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection
Abstract It is proved analytically that the complex growth rate σ= σr+iσi (σr and σi are the real and imaginary parts of σ, respectively) of an arbitrary oscillatory motion of neutral or growing amplitude in ferrothermohaline convection in a ferrofluid layer for the case of free boundaries is located inside a semicircle in the right half of the σrσi-plane, whose center is at the origin and radius = Rs[1−M1′(1−1M5)]Pr′, {\rm{radius}}\, = \,\sqrt {{{{R_s}\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {P_r^{'}}}}, where Rs is the concentration Rayleigh number, Pr′ is the solutal Prandtl number, M1′ is the ratio of magnetic flux due to concentration fluctuation to the gravitational force, and M5 is the ratio of concentration effect on magnetic field to pyromagnetic coefficient. Further, bounds for the case of rigid boundaries are also derived separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信