仿射delign - lusztig变体的扭轨积分和不可约分量

IF 1.8 2区 数学 Q1 MATHEMATICS
Rong Zhou, Yihang Zhu
{"title":"仿射delign - lusztig变体的扭轨积分和不可约分量","authors":"Rong Zhou, Yihang Zhu","doi":"10.4310/CJM.2020.v8.n1.a3","DOIUrl":null,"url":null,"abstract":"We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and $q$-analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the action of the $\\sigma$-centralizer group to the Mirkovic-Vilonen basis of a certain weight space of a representation of the Langlands dual group.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Twisted orbital integrals and irreducible components of affine Deligne–Lusztig varieties\",\"authors\":\"Rong Zhou, Yihang Zhu\",\"doi\":\"10.4310/CJM.2020.v8.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and $q$-analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the action of the $\\\\sigma$-centralizer group to the Mirkovic-Vilonen basis of a certain weight space of a representation of the Langlands dual group.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CJM.2020.v8.n1.a3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CJM.2020.v8.n1.a3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

我们分析了由仿射Deligne-Lusztig变种研究引起的某些扭曲轨道积分的渐近性质。主要工具包括基变基本引理和Kostant配分函数的$q$-类似物。作为应用,我们证明了陈妙芬和朱新文的一个猜想,将模$\sigma$-中心化子群作用的仿射Deligne-Lusztig变种的不可约分量集与Langlands对偶群表示的某个权空间的Mirkovic-Vilonen基联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted orbital integrals and irreducible components of affine Deligne–Lusztig varieties
We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and $q$-analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the action of the $\sigma$-centralizer group to the Mirkovic-Vilonen basis of a certain weight space of a representation of the Langlands dual group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信