Drinfeld-Gaitsgory-Vinberg插值格拉斯曼和长缠结函子上的附近环

IF 2.3 1区 数学 Q1 MATHEMATICS
Lin Chen
{"title":"Drinfeld-Gaitsgory-Vinberg插值格拉斯曼和长缠结函子上的附近环","authors":"Lin Chen","doi":"10.1215/00127094-2022-0042","DOIUrl":null,"url":null,"abstract":"Let $G$ be a reductive group and $U,U^-$ be the unipotent radicals of a pair of opposite parabolic subgroups $P,P^-$. We prove that the DG-categories of $U(\\!(t)\\!)$-equivariant and $U^-(\\!(t)\\!)$-equivariant D-modules on the affine Grassmannian $Gr_G$ are canonically dual to each other. We show that the unit object witnessing this duality is given by nearby cycles on the Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian defined in arXiv:1805.07721. We study various properties of the mentioned nearby cycles, in particular compare them with the nearby cycles studied in arXiv:1411.4206 and arXiv:1607.00586. We also generalize our results to the Beilinson-Drinfeld Grassmannian $Gr_{G,X^I}$ and to the affine flag variety $Fl_G$.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nearby cycles on Drinfeld–Gaitsgory–Vinberg interpolation Grassmannian and long intertwining functor\",\"authors\":\"Lin Chen\",\"doi\":\"10.1215/00127094-2022-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a reductive group and $U,U^-$ be the unipotent radicals of a pair of opposite parabolic subgroups $P,P^-$. We prove that the DG-categories of $U(\\\\!(t)\\\\!)$-equivariant and $U^-(\\\\!(t)\\\\!)$-equivariant D-modules on the affine Grassmannian $Gr_G$ are canonically dual to each other. We show that the unit object witnessing this duality is given by nearby cycles on the Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian defined in arXiv:1805.07721. We study various properties of the mentioned nearby cycles, in particular compare them with the nearby cycles studied in arXiv:1411.4206 and arXiv:1607.00586. We also generalize our results to the Beilinson-Drinfeld Grassmannian $Gr_{G,X^I}$ and to the affine flag variety $Fl_G$.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0042\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0042","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$G$是一个约化群,$U,U^-$是一对对偶抛物子群$P,P^-$的单能根。证明了仿射Grassmannian $Gr_G$上$U(\!(t)\!)$-等变和$U^-(\!(t)\!)$-等变d模的dg -范畴是相互对偶的。在arXiv:1805.07721中定义的Drinfeld-Gaitsgory-Vinberg插值格拉曼上,我们证明了见证这种对偶性的单位对象是由附近的环给出的。我们研究了上述邻近旋回的各种性质,特别将它们与arXiv:1411.4206和arXiv:1607.00586中研究的邻近旋回进行了比较。我们还将我们的结果推广到Beilinson-Drinfeld Grassmannian $Gr_{G,X^I}$和仿射标志变量$Fl_G$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearby cycles on Drinfeld–Gaitsgory–Vinberg interpolation Grassmannian and long intertwining functor
Let $G$ be a reductive group and $U,U^-$ be the unipotent radicals of a pair of opposite parabolic subgroups $P,P^-$. We prove that the DG-categories of $U(\!(t)\!)$-equivariant and $U^-(\!(t)\!)$-equivariant D-modules on the affine Grassmannian $Gr_G$ are canonically dual to each other. We show that the unit object witnessing this duality is given by nearby cycles on the Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian defined in arXiv:1805.07721. We study various properties of the mentioned nearby cycles, in particular compare them with the nearby cycles studied in arXiv:1411.4206 and arXiv:1607.00586. We also generalize our results to the Beilinson-Drinfeld Grassmannian $Gr_{G,X^I}$ and to the affine flag variety $Fl_G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信