氢键的O NMR和DFT研究:质子共享和初始转移

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
V. Balevičius, K. Aidas, A. Marsalka, F. Kuliesius, V. Jakubkienė, S. Tumkevičius
{"title":"氢键的O NMR和DFT研究:质子共享和初始转移","authors":"V. Balevičius, K. Aidas, A. Marsalka, F. Kuliesius, V. Jakubkienė, S. Tumkevičius","doi":"10.3952/physics.v62i2.4744","DOIUrl":null,"url":null,"abstract":"O NMR spectra of pyridine N-oxide (PyO) complexes with the acids – acetic (AA), cyanoacetic (CyA), propiolic (PA), trichloroacetic (TCA), trifluoroacetic (TFA), hydrochloric (HCl) and methanesulfonic (MSA) – as well as some related molecules with intramolecular H-bonds (4-substituted picolinic acid N-oxides) were studied in an acetonitrile (ACN) solution. In order to evaluate the effect of proton positioning along the O–H…O bond on the measured chemical shifts the full geometry optimization was carried out, and 17O magnetic shielding tensors were calculated using density functional theory (DFT). The modified hybrid functional PBE1PBE with the 6-311++G** basis set and the gauge-including atomic orbital (GIAO) approach were applied. The solvent effect was taken into account by a polarized continuum model using the integral equation formalism (IEFPCM). Two stable structures were deduced for the PyO complexes with TCA and TFA that correspond to the H-bonds with and without proton transfer (PT). Two minima on the potential surface were separated by ca 0.2 Å. The experimental 17O NMR spectra have shown that the PyO-TCA complex in ACN can be considered as H-bonding with incipient PT, whereas it is known from neutron diffraction that in its crystalline state PT occurs. The proton location in PyO-TFA due to the thermally induced proton sharing was found at the middle point. The 17O NMR data for the acids with an intramolecular H-bond (nitroPANO, PANO and methoxyPANO) deviate from the general trend. The factors that can cause it, such as the substitution effect, persistence of nano-crystallites in a solution due to a low solubility, etc., have been discussed.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"O NMR and DFT study of hydrogen bonding: Proton sharing and incipient transfer\",\"authors\":\"V. Balevičius, K. Aidas, A. Marsalka, F. Kuliesius, V. Jakubkienė, S. Tumkevičius\",\"doi\":\"10.3952/physics.v62i2.4744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O NMR spectra of pyridine N-oxide (PyO) complexes with the acids – acetic (AA), cyanoacetic (CyA), propiolic (PA), trichloroacetic (TCA), trifluoroacetic (TFA), hydrochloric (HCl) and methanesulfonic (MSA) – as well as some related molecules with intramolecular H-bonds (4-substituted picolinic acid N-oxides) were studied in an acetonitrile (ACN) solution. In order to evaluate the effect of proton positioning along the O–H…O bond on the measured chemical shifts the full geometry optimization was carried out, and 17O magnetic shielding tensors were calculated using density functional theory (DFT). The modified hybrid functional PBE1PBE with the 6-311++G** basis set and the gauge-including atomic orbital (GIAO) approach were applied. The solvent effect was taken into account by a polarized continuum model using the integral equation formalism (IEFPCM). Two stable structures were deduced for the PyO complexes with TCA and TFA that correspond to the H-bonds with and without proton transfer (PT). Two minima on the potential surface were separated by ca 0.2 Å. The experimental 17O NMR spectra have shown that the PyO-TCA complex in ACN can be considered as H-bonding with incipient PT, whereas it is known from neutron diffraction that in its crystalline state PT occurs. The proton location in PyO-TFA due to the thermally induced proton sharing was found at the middle point. The 17O NMR data for the acids with an intramolecular H-bond (nitroPANO, PANO and methoxyPANO) deviate from the general trend. The factors that can cause it, such as the substitution effect, persistence of nano-crystallites in a solution due to a low solubility, etc., have been discussed.\",\"PeriodicalId\":18144,\"journal\":{\"name\":\"Lithuanian Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3952/physics.v62i2.4744\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v62i2.4744","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在乙腈(ACN)溶液中,研究了吡啶n -氧化物(PyO)配合物与乙酸(AA)、氰乙酸(CyA)、丙酸(PA)、三氯乙酸(TCA)、三氟乙酸(TFA)、盐酸(HCl)和甲烷磺酸(MSA)等酸以及具有分子内氢键的相关分子(4-取代吡啶酸n -氧化物)的核磁共振波谱。为了评估质子沿O - h…O键定位对测量化学位移的影响,进行了全几何优化,并利用密度泛函理论(DFT)计算了17O磁屏蔽张量。采用6-311++G**基集的改进杂化泛函PBE1PBE,采用含量规原子轨道(GIAO)方法。采用积分方程(IEFPCM)的极化连续介质模型考虑了溶剂效应。推导了含TCA和TFA的PyO配合物的两种稳定结构,它们对应于质子转移(PT)和不质子转移(PT)的氢键。电势表面上的两个极小值用ca 0.2 Å隔开。实验的17O核磁共振谱表明,ACN中的PyO-TCA配合物可以认为是与初始PT成氢键,而从中子衍射可知,在其晶体状态下,PT发生。在PyO-TFA中,由于热诱导的质子共享,质子定位在中点。具有分子内氢键的酸(硝基PANO, PANO和甲氧基PANO)的17O NMR数据偏离了一般趋势。本文还讨论了纳米晶在溶液中溶解度低而导致的取代效应、纳米晶在溶液中的持久性等因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
O NMR and DFT study of hydrogen bonding: Proton sharing and incipient transfer
O NMR spectra of pyridine N-oxide (PyO) complexes with the acids – acetic (AA), cyanoacetic (CyA), propiolic (PA), trichloroacetic (TCA), trifluoroacetic (TFA), hydrochloric (HCl) and methanesulfonic (MSA) – as well as some related molecules with intramolecular H-bonds (4-substituted picolinic acid N-oxides) were studied in an acetonitrile (ACN) solution. In order to evaluate the effect of proton positioning along the O–H…O bond on the measured chemical shifts the full geometry optimization was carried out, and 17O magnetic shielding tensors were calculated using density functional theory (DFT). The modified hybrid functional PBE1PBE with the 6-311++G** basis set and the gauge-including atomic orbital (GIAO) approach were applied. The solvent effect was taken into account by a polarized continuum model using the integral equation formalism (IEFPCM). Two stable structures were deduced for the PyO complexes with TCA and TFA that correspond to the H-bonds with and without proton transfer (PT). Two minima on the potential surface were separated by ca 0.2 Å. The experimental 17O NMR spectra have shown that the PyO-TCA complex in ACN can be considered as H-bonding with incipient PT, whereas it is known from neutron diffraction that in its crystalline state PT occurs. The proton location in PyO-TFA due to the thermally induced proton sharing was found at the middle point. The 17O NMR data for the acids with an intramolecular H-bond (nitroPANO, PANO and methoxyPANO) deviate from the general trend. The factors that can cause it, such as the substitution effect, persistence of nano-crystallites in a solution due to a low solubility, etc., have been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lithuanian Journal of Physics
Lithuanian Journal of Physics 物理-物理:综合
CiteScore
0.90
自引率
16.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信