{"title":"社会数据治理:走向定义和模型","authors":"Jun Liu","doi":"10.1177/20539517221111352","DOIUrl":null,"url":null,"abstract":"With the surge in the number of data and datafied governance initiatives, arrangements, and practices across the globe, understanding various types of such initiatives, arrangements, and their structural causes has become a daunting task for scholars, policy makers, and the public. This complexity additionally generates substantial difficulties in considering different data(fied) governances commensurable with each other. To advance the discussion, this study argues that existing scholarship is inclined to embrace an organization-centric perspective that primarily concerns factors and dynamics regarding data and datafication at the organizational level at the expense of macro-level social, political, and cultural factors of both data and governance. To explicate the macro, societal dimension of data governance, this study then suggests the term “social data governance” to bring forth the consideration that data governance not only reflects the society from which it emerges but also (re)produces the policies and practices of the society in question. Drawing on theories of political science and public management, a model of social data governance is proposed to elucidate the ideological and conceptual groundings of various modes of governance from a comparative perspective. This preliminary model, consisting of a two-dimensional continuum, state intervention and societal autonomy for the one, and national cultures for the other, accounts for variations in social data governance across societies as a complementary way of conceptualizing and categorizing data governance beyond the European standpoint. Finally, we conduct an extreme case study of governing digital contact-tracing techniques during the pandemic to exemplify the explanatory power of the proposed model of social data governance.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Social data governance: Towards a definition and model\",\"authors\":\"Jun Liu\",\"doi\":\"10.1177/20539517221111352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the surge in the number of data and datafied governance initiatives, arrangements, and practices across the globe, understanding various types of such initiatives, arrangements, and their structural causes has become a daunting task for scholars, policy makers, and the public. This complexity additionally generates substantial difficulties in considering different data(fied) governances commensurable with each other. To advance the discussion, this study argues that existing scholarship is inclined to embrace an organization-centric perspective that primarily concerns factors and dynamics regarding data and datafication at the organizational level at the expense of macro-level social, political, and cultural factors of both data and governance. To explicate the macro, societal dimension of data governance, this study then suggests the term “social data governance” to bring forth the consideration that data governance not only reflects the society from which it emerges but also (re)produces the policies and practices of the society in question. Drawing on theories of political science and public management, a model of social data governance is proposed to elucidate the ideological and conceptual groundings of various modes of governance from a comparative perspective. This preliminary model, consisting of a two-dimensional continuum, state intervention and societal autonomy for the one, and national cultures for the other, accounts for variations in social data governance across societies as a complementary way of conceptualizing and categorizing data governance beyond the European standpoint. Finally, we conduct an extreme case study of governing digital contact-tracing techniques during the pandemic to exemplify the explanatory power of the proposed model of social data governance.\",\"PeriodicalId\":47834,\"journal\":{\"name\":\"Big Data & Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data & Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/20539517221111352\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517221111352","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Social data governance: Towards a definition and model
With the surge in the number of data and datafied governance initiatives, arrangements, and practices across the globe, understanding various types of such initiatives, arrangements, and their structural causes has become a daunting task for scholars, policy makers, and the public. This complexity additionally generates substantial difficulties in considering different data(fied) governances commensurable with each other. To advance the discussion, this study argues that existing scholarship is inclined to embrace an organization-centric perspective that primarily concerns factors and dynamics regarding data and datafication at the organizational level at the expense of macro-level social, political, and cultural factors of both data and governance. To explicate the macro, societal dimension of data governance, this study then suggests the term “social data governance” to bring forth the consideration that data governance not only reflects the society from which it emerges but also (re)produces the policies and practices of the society in question. Drawing on theories of political science and public management, a model of social data governance is proposed to elucidate the ideological and conceptual groundings of various modes of governance from a comparative perspective. This preliminary model, consisting of a two-dimensional continuum, state intervention and societal autonomy for the one, and national cultures for the other, accounts for variations in social data governance across societies as a complementary way of conceptualizing and categorizing data governance beyond the European standpoint. Finally, we conduct an extreme case study of governing digital contact-tracing techniques during the pandemic to exemplify the explanatory power of the proposed model of social data governance.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.