{"title":"边际闭合向量自回归时间序列模型","authors":"Lin Zhang, Harry Joe, Natalia Nolde","doi":"10.1111/jtsa.12712","DOIUrl":null,"url":null,"abstract":"<p>Conditions are obtained for a Gaussian vector autoregressive time series of order <math></math>, VAR(<math></math>), to have univariate margins that are autoregressive of order <math></math> or lower-dimensional margins that are also VAR(<math></math>). This can lead to <math></math>-dimensional VAR(<math></math>) models that are closed with respect to a given partition <math></math> of <math></math> by specifying marginal serial dependence and some cross-sectional dependence parameters. The special closure property allows one to fit the subprocesses of multi-variate time series before assembling them by fitting the dependence structure between the subprocesses. We revisit the use of the Gaussian copula of the stationary joint distribution of observations in the VAR(<math></math>) process with non-Gaussian univariate margins but under the constraint of closure under margins. This construction allows more flexibility in handling higher-dimensional time series and a multi-stage estimation procedure can be used. The proposed class of models is applied to a macro-economic data set and compared with the relevant benchmark models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12712","citationCount":"0","resultStr":"{\"title\":\"Margin-closed vector autoregressive time series models\",\"authors\":\"Lin Zhang, Harry Joe, Natalia Nolde\",\"doi\":\"10.1111/jtsa.12712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conditions are obtained for a Gaussian vector autoregressive time series of order <math></math>, VAR(<math></math>), to have univariate margins that are autoregressive of order <math></math> or lower-dimensional margins that are also VAR(<math></math>). This can lead to <math></math>-dimensional VAR(<math></math>) models that are closed with respect to a given partition <math></math> of <math></math> by specifying marginal serial dependence and some cross-sectional dependence parameters. The special closure property allows one to fit the subprocesses of multi-variate time series before assembling them by fitting the dependence structure between the subprocesses. We revisit the use of the Gaussian copula of the stationary joint distribution of observations in the VAR(<math></math>) process with non-Gaussian univariate margins but under the constraint of closure under margins. This construction allows more flexibility in handling higher-dimensional time series and a multi-stage estimation procedure can be used. The proposed class of models is applied to a macro-economic data set and compared with the relevant benchmark models.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12712\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12712\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Margin-closed vector autoregressive time series models
Conditions are obtained for a Gaussian vector autoregressive time series of order , VAR(), to have univariate margins that are autoregressive of order or lower-dimensional margins that are also VAR(). This can lead to -dimensional VAR() models that are closed with respect to a given partition of by specifying marginal serial dependence and some cross-sectional dependence parameters. The special closure property allows one to fit the subprocesses of multi-variate time series before assembling them by fitting the dependence structure between the subprocesses. We revisit the use of the Gaussian copula of the stationary joint distribution of observations in the VAR() process with non-Gaussian univariate margins but under the constraint of closure under margins. This construction allows more flexibility in handling higher-dimensional time series and a multi-stage estimation procedure can be used. The proposed class of models is applied to a macro-economic data set and compared with the relevant benchmark models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.