关于Kerr-Newman时空和Heun函数的Dirac方程

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
C. Dariescu, M. Dariescu, Cristian Stelea
{"title":"关于Kerr-Newman时空和Heun函数的Dirac方程","authors":"C. Dariescu, M. Dariescu, Cristian Stelea","doi":"10.1155/2021/5512735","DOIUrl":null,"url":null,"abstract":"By employing a pseudoorthonormal coordinate-free approach, the Dirac equation for particles in the Kerr–Newman spacetime is separated into its radial and angular parts. In the massless case to which a special attention is given, the general Heun-type equations turn into their confluent form. We show how one recovers some results previously obtained in literature, by other means.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":"1-10"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dirac Equation on the Kerr–Newman Spacetime and Heun Functions\",\"authors\":\"C. Dariescu, M. Dariescu, Cristian Stelea\",\"doi\":\"10.1155/2021/5512735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By employing a pseudoorthonormal coordinate-free approach, the Dirac equation for particles in the Kerr–Newman spacetime is separated into its radial and angular parts. In the massless case to which a special attention is given, the general Heun-type equations turn into their confluent form. We show how one recovers some results previously obtained in literature, by other means.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5512735\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5512735","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 5

摘要

通过采用伪正交坐标自由方法,将Kerr–Newman时空中粒子的Dirac方程分为径向和角向两部分。在特别注意的无质量情况下,一般的Heun型方程变成了它们的合流形式。我们展示了如何通过其他方法恢复以前在文献中获得的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirac Equation on the Kerr–Newman Spacetime and Heun Functions
By employing a pseudoorthonormal coordinate-free approach, the Dirac equation for particles in the Kerr–Newman spacetime is separated into its radial and angular parts. In the massless case to which a special attention is given, the general Heun-type equations turn into their confluent form. We show how one recovers some results previously obtained in literature, by other means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信