带系数的同调填充函数

IF 0.6 3区 数学 Q3 MATHEMATICS
Xing-xiao Li, Fedor Manin
{"title":"带系数的同调填充函数","authors":"Xing-xiao Li, Fedor Manin","doi":"10.4171/ggd/675","DOIUrl":null,"url":null,"abstract":"How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in \"Asymptotic invariants of infinite groups\", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \\geq 1$ and every pair of coefficient groups $A, B \\in \\{\\mathbb{Z},\\mathbb{Q}\\} \\cup \\{\\mathbb{Z}/p\\mathbb{Z} : p\\text{ prime}\\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.","PeriodicalId":55084,"journal":{"name":"Groups Geometry and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homological filling functions with coefficients\",\"authors\":\"Xing-xiao Li, Fedor Manin\",\"doi\":\"10.4171/ggd/675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in \\\"Asymptotic invariants of infinite groups\\\", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \\\\geq 1$ and every pair of coefficient groups $A, B \\\\in \\\\{\\\\mathbb{Z},\\\\mathbb{Q}\\\\} \\\\cup \\\\{\\\\mathbb{Z}/p\\\\mathbb{Z} : p\\\\text{ prime}\\\\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.\",\"PeriodicalId\":55084,\"journal\":{\"name\":\"Groups Geometry and Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Geometry and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/675\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Geometry and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/675","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在无方向曲面的Cayley图中填充一个循环有多难?根据Gromov在“无穷群的渐近不变量”中的注释,我们定义了群中带系数群的同调填充函数$R$。我们的主要定理是系数是有区别的。即对于每一个$n \geq 1$和每一对系数群$A, B \in \{\mathbb{Z},\mathbb{Q}\} \cup \{\mathbb{Z}/p\mathbb{Z} : p\text{ prime}\}$,都有一个群,其对$A$和$B$中有系数的$n$ -环的填充函数具有不同的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological filling functions with coefficients
How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in "Asymptotic invariants of infinite groups", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \geq 1$ and every pair of coefficient groups $A, B \in \{\mathbb{Z},\mathbb{Q}\} \cup \{\mathbb{Z}/p\mathbb{Z} : p\text{ prime}\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Groups, Geometry, and Dynamics is devoted to publication of research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. The journal covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields. Topics covered include: geometric group theory; asymptotic group theory; combinatorial group theory; probabilities on groups; computational aspects and complexity; harmonic and functional analysis on groups, free probability; ergodic theory of group actions; cohomology of groups and exotic cohomologies; groups and low-dimensional topology; group actions on trees, buildings, rooted trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信