{"title":"SO3的二进共滤(Q)","authors":"Tengiz Bokelavadze , Raffaello Caserta","doi":"10.1016/j.trmi.2017.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> of rational rotations is the inverse limit of a family of finite solvable groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></math></span>, whose <span><math><mn>2</mn></math></span>-Sylow subgroups have nilpotency class <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>3</mn></math></span>, exponent <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and Frattini subgroups coinciding with the commutator subgroups, and we give generators for these groups.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 257-263"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.06.001","citationCount":"0","resultStr":"{\"title\":\"2-adic cofiltration of SO3(Q)\",\"authors\":\"Tengiz Bokelavadze , Raffaello Caserta\",\"doi\":\"10.1016/j.trmi.2017.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> of rational rotations is the inverse limit of a family of finite solvable groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></math></span>, whose <span><math><mn>2</mn></math></span>-Sylow subgroups have nilpotency class <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>3</mn></math></span>, exponent <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and Frattini subgroups coinciding with the commutator subgroups, and we give generators for these groups.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 3\",\"pages\":\"Pages 257-263\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.06.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217300077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that the group of rational rotations is the inverse limit of a family of finite solvable groups of order , whose -Sylow subgroups have nilpotency class , exponent , and Frattini subgroups coinciding with the commutator subgroups, and we give generators for these groups.