基于嵌入石墨氮化碳(gCN)的11族金属(Cu、Ag和Au)纳米粒子的增强丙酮传感

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-05-01 DOI:10.3390/atoms11050078
Nihal, R. Sharma, Navjot Kaur, Mamta Sharma, B. Choudhary, J. Goswamy
{"title":"基于嵌入石墨氮化碳(gCN)的11族金属(Cu、Ag和Au)纳米粒子的增强丙酮传感","authors":"Nihal, R. Sharma, Navjot Kaur, Mamta Sharma, B. Choudhary, J. Goswamy","doi":"10.3390/atoms11050078","DOIUrl":null,"url":null,"abstract":"In this work, a group-11 metal nanoparticle-embedded, graphitic carbon nitride-based, resistive-type sensor was developed for room temperature acetone sensing. We synthesized pure and group-11 transition metal (Cu, Ag and Au) nanoparticles embedded in graphitic carbon nitride (gCN) by thermal polycondensation and chemical reduction methods. The synthesized material was characterized using UV/visspectroscopy, FTIRspectroscopy, XRD, HRTEM, FESEM, and EDS techniques. Sensing properties such as response, response/recovery time, selectivity, and stability were calculated. This study confirms that Ag/gCN is the best material for room temperature sensing of acetone compared to Cu/gCN, Au/gCN, and pure gCN. The response of Ag/gCN for 20 ppm acetone at room temperature is 28%. The response/recovery time is 42.05/37.09 s. Moreover, the response of Ag/gCN is stable for 10 days.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Acetone Sensing Based on Group-11 Metal (Cu, Ag, and Au) Nanoparticles Embedded in Graphitic Carbon Nitride (gCN)\",\"authors\":\"Nihal, R. Sharma, Navjot Kaur, Mamta Sharma, B. Choudhary, J. Goswamy\",\"doi\":\"10.3390/atoms11050078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a group-11 metal nanoparticle-embedded, graphitic carbon nitride-based, resistive-type sensor was developed for room temperature acetone sensing. We synthesized pure and group-11 transition metal (Cu, Ag and Au) nanoparticles embedded in graphitic carbon nitride (gCN) by thermal polycondensation and chemical reduction methods. The synthesized material was characterized using UV/visspectroscopy, FTIRspectroscopy, XRD, HRTEM, FESEM, and EDS techniques. Sensing properties such as response, response/recovery time, selectivity, and stability were calculated. This study confirms that Ag/gCN is the best material for room temperature sensing of acetone compared to Cu/gCN, Au/gCN, and pure gCN. The response of Ag/gCN for 20 ppm acetone at room temperature is 28%. The response/recovery time is 42.05/37.09 s. Moreover, the response of Ag/gCN is stable for 10 days.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11050078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11050078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了一种用于室温丙酮传感的11族金属纳米颗粒嵌入、石墨氮化碳基电阻型传感器。我们通过热缩聚和化学还原方法合成了嵌入石墨氮化碳(gCN)中的纯11族过渡金属(Cu、Ag和Au)纳米颗粒。利用紫外/可见光谱、FTIR光谱、XRD、HRTEM、FESEM和EDS技术对合成的材料进行了表征。计算了响应、响应/恢复时间、选择性和稳定性等传感特性。本研究证实,与Cu/gCN、Au/gCN和纯gCN相比,Ag/gCN是丙酮室温传感的最佳材料。Ag/gCN在室温下对20ppm丙酮的响应为28%。响应/恢复时间为42.05/37.09s。此外,Ag/gCN的响应在10天内是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Acetone Sensing Based on Group-11 Metal (Cu, Ag, and Au) Nanoparticles Embedded in Graphitic Carbon Nitride (gCN)
In this work, a group-11 metal nanoparticle-embedded, graphitic carbon nitride-based, resistive-type sensor was developed for room temperature acetone sensing. We synthesized pure and group-11 transition metal (Cu, Ag and Au) nanoparticles embedded in graphitic carbon nitride (gCN) by thermal polycondensation and chemical reduction methods. The synthesized material was characterized using UV/visspectroscopy, FTIRspectroscopy, XRD, HRTEM, FESEM, and EDS techniques. Sensing properties such as response, response/recovery time, selectivity, and stability were calculated. This study confirms that Ag/gCN is the best material for room temperature sensing of acetone compared to Cu/gCN, Au/gCN, and pure gCN. The response of Ag/gCN for 20 ppm acetone at room temperature is 28%. The response/recovery time is 42.05/37.09 s. Moreover, the response of Ag/gCN is stable for 10 days.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信