关键集群级联

Pub Date : 2022-08-17 DOI:10.1017/apr.2022.26
Matthias Kirchner
{"title":"关键集群级联","authors":"Matthias Kirchner","doi":"10.1017/apr.2022.26","DOIUrl":null,"url":null,"abstract":"Abstract We consider a sequence of Poisson cluster point processes on \n$\\mathbb{R}^d$\n : at step \n$n\\in\\mathbb{N}_0$\n of the construction, the cluster centers have intensity \n$c/(n+1)$\n for some \n$c>0$\n , and each cluster consists of the particles of a branching random walk up to generation n—generated by a point process with mean 1. We show that this ‘critical cluster cascade’ converges weakly, and that either the limit point process equals the void process (extinction), or it has the same intensity c as the critical cluster cascade (persistence). We obtain persistence if and only if the Palm version of the outgrown critical branching random walk is locally almost surely finite. This result allows us to give numerous examples for persistent critical cluster cascades.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical cluster cascades\",\"authors\":\"Matthias Kirchner\",\"doi\":\"10.1017/apr.2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a sequence of Poisson cluster point processes on \\n$\\\\mathbb{R}^d$\\n : at step \\n$n\\\\in\\\\mathbb{N}_0$\\n of the construction, the cluster centers have intensity \\n$c/(n+1)$\\n for some \\n$c>0$\\n , and each cluster consists of the particles of a branching random walk up to generation n—generated by a point process with mean 1. We show that this ‘critical cluster cascade’ converges weakly, and that either the limit point process equals the void process (extinction), or it has the same intensity c as the critical cluster cascade (persistence). We obtain persistence if and only if the Palm version of the outgrown critical branching random walk is locally almost surely finite. This result allows us to give numerous examples for persistent critical cluster cascades.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2022.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们考虑$\mathbb{R}^d$上的Poisson簇点过程序列:在步骤$n\in\mathbb{N}_0$的构造,对于一些$c>0$,簇中心具有强度$c/(n+1)$,并且每个簇由分支随机游动的粒子组成,直到第n代——由平均值为1的点过程生成。我们证明了这种“临界簇级联”的收敛性很弱,并且极限点过程等于空位过程(消光),或者它与临界簇级联具有相同的强度c(持久性)。我们获得持久性,当且仅当增长临界分支随机行走的Palm版本是局部几乎肯定有限的。这一结果使我们能够给出许多持久关键集群级联的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Critical cluster cascades
Abstract We consider a sequence of Poisson cluster point processes on $\mathbb{R}^d$ : at step $n\in\mathbb{N}_0$ of the construction, the cluster centers have intensity $c/(n+1)$ for some $c>0$ , and each cluster consists of the particles of a branching random walk up to generation n—generated by a point process with mean 1. We show that this ‘critical cluster cascade’ converges weakly, and that either the limit point process equals the void process (extinction), or it has the same intensity c as the critical cluster cascade (persistence). We obtain persistence if and only if the Palm version of the outgrown critical branching random walk is locally almost surely finite. This result allows us to give numerous examples for persistent critical cluster cascades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信