{"title":"正交各向异性非均匀棱柱形壳状体的反平面应变(剪切)","authors":"N. Chinchaladze, G. Jaiani","doi":"10.24423/AOM.2533","DOIUrl":null,"url":null,"abstract":"Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies are considered when the shear modulus depending on the body projection (i.e., on a domain lying in the plane of interest) variables may vanish either on a part or on the entire boundary of the projection. We study the dependence of the well-posedness of the boundary conditions (BCs) on the character of the vanishing of the shear modulus. The case of vibration is considered as well.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"69 1","pages":"305-316"},"PeriodicalIF":1.1000,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies\",\"authors\":\"N. Chinchaladze, G. Jaiani\",\"doi\":\"10.24423/AOM.2533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies are considered when the shear modulus depending on the body projection (i.e., on a domain lying in the plane of interest) variables may vanish either on a part or on the entire boundary of the projection. We study the dependence of the well-posedness of the boundary conditions (BCs) on the character of the vanishing of the shear modulus. The case of vibration is considered as well.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"69 1\",\"pages\":\"305-316\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.2533\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.2533","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies
Antiplane strain (shear) of orthotropic non-homogeneous prismatic shell-like bodies are considered when the shear modulus depending on the body projection (i.e., on a domain lying in the plane of interest) variables may vanish either on a part or on the entire boundary of the projection. We study the dependence of the well-posedness of the boundary conditions (BCs) on the character of the vanishing of the shear modulus. The case of vibration is considered as well.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.