{"title":"具有各向同性和运动硬化的损伤累积模型常数和参数的确定方法","authors":"D. I. Fedorenkov, D. A. Kosov, A. V. Tumanov","doi":"10.1134/S1029959923020054","DOIUrl":null,"url":null,"abstract":"<p>The description of cyclic plasticity requires experimental determination of the constants entered into respective resulting equations. In this paper, a method is proposed for determining the parameters and constants of a Lemaitre-type damage accumulation model on the example of P2M rotary steel. The model is based on the Voce isotropic and the Armstrong–Frederick kinematic hardening law. The method of experimental determination involves standard uniaxial tension tests as applied to the parameters of isotropic hardening, and low-cycle fatigue tests, to the constants of damage accumulation and parameters of kinematic hardening. The method is applicable to any alloy that fits the model representations. Using the constants and parameters found, the behavior of cylindrical P2M steel specimens under cyclic loading is modeled by finite element simulation and their fatigue curve is plotted. The predicted fatigue life of P2M steel correlates well with experimental data.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 2","pages":"157 - 166"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Determining the Constants and Parameters of a Damage Accumulation Model with Isotropic and Kinematic Hardening\",\"authors\":\"D. I. Fedorenkov, D. A. Kosov, A. V. Tumanov\",\"doi\":\"10.1134/S1029959923020054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The description of cyclic plasticity requires experimental determination of the constants entered into respective resulting equations. In this paper, a method is proposed for determining the parameters and constants of a Lemaitre-type damage accumulation model on the example of P2M rotary steel. The model is based on the Voce isotropic and the Armstrong–Frederick kinematic hardening law. The method of experimental determination involves standard uniaxial tension tests as applied to the parameters of isotropic hardening, and low-cycle fatigue tests, to the constants of damage accumulation and parameters of kinematic hardening. The method is applicable to any alloy that fits the model representations. Using the constants and parameters found, the behavior of cylindrical P2M steel specimens under cyclic loading is modeled by finite element simulation and their fatigue curve is plotted. The predicted fatigue life of P2M steel correlates well with experimental data.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"26 2\",\"pages\":\"157 - 166\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959923020054\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923020054","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A Method of Determining the Constants and Parameters of a Damage Accumulation Model with Isotropic and Kinematic Hardening
The description of cyclic plasticity requires experimental determination of the constants entered into respective resulting equations. In this paper, a method is proposed for determining the parameters and constants of a Lemaitre-type damage accumulation model on the example of P2M rotary steel. The model is based on the Voce isotropic and the Armstrong–Frederick kinematic hardening law. The method of experimental determination involves standard uniaxial tension tests as applied to the parameters of isotropic hardening, and low-cycle fatigue tests, to the constants of damage accumulation and parameters of kinematic hardening. The method is applicable to any alloy that fits the model representations. Using the constants and parameters found, the behavior of cylindrical P2M steel specimens under cyclic loading is modeled by finite element simulation and their fatigue curve is plotted. The predicted fatigue life of P2M steel correlates well with experimental data.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.