基于rns的可重构FIR滤波器在语音信号降噪中的设计与性能分析

Q3 Mathematics
Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna
{"title":"基于rns的可重构FIR滤波器在语音信号降噪中的设计与性能分析","authors":"Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna","doi":"10.37394/23203.2023.18.16","DOIUrl":null,"url":null,"abstract":"In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance Analysis of RNS-Based Reconfigurable FIR Filter for Noise Removal in Speech Signals Applications\",\"authors\":\"Manjunath P. S., Revanna C. R., Kusuma M. S., Ponduri Sivaprasad, Uppala Ramakrishna\",\"doi\":\"10.37394/23203.2023.18.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23203.2023.18.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23203.2023.18.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在DSP解决方案中,带有二补系统的余数系统是构建低功耗和高吞吐量可编程有限脉冲响应滤波器最常用的系统。通过将结果与当前断言进行比较,可以在残差数组织和2的增强方案中创建FIR过滤器。基于FIR滤波器架构的RNS降低了功耗,同时允许器件在150 MHz的频率下工作,而不会显着增加其尺寸。在内存和延迟减少的情况下,残数系统和2的补码系统的实现必须能够用更少的物理服务器来获取和解码每个时钟信号。该模型的主要思想是为基于rns的乘法器和延迟小波LMS (DWLMS)提供更大尺寸的数据位,这些数据位通过正向和反向转换在高速运行的前提下可重构FIR中运行,而这种转换不会产生像反射思维那样多的功率输出和大小。专用集成电路将设计和集成32纳米技术。提出的设计解决了四个基本参数的优化,如功率,面积和时间,使用残数系统,这是优于二补系统。根据研究结果,功耗降低了13%,面积增加了21%,吞吐量提高了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Performance Analysis of RNS-Based Reconfigurable FIR Filter for Noise Removal in Speech Signals Applications
In DSP solutions, the Residual Number System with Two's Complement systems is the most commonly utilized system for building low-power and high-throughput programmable Finite Impulse Response filters. It would be done by creating FIR filters in the Residual Number organization and 2's Enhance scheme by comparing the results to the current assert. The RNS based on FIR filter architecture reduces power consumption while allowing the device to operate at 150 MHz without increasing its size significantly. In case of memory and latency reduction, the implementations of the Residual Number System and 2's Complement System must be able to obtain and decode signals with fewer physical servers for every clock signal. The principal idea of this proposed model is to provide data bits with larger sizes for RNS-based multiplier and delayed wavelet LMS (DWLMS) that operates at speed high with premised reconfigurable FIR via forward and reverse conversions that don't produce as much power output and size as reflective thinking. The Application Specific Integrated Circuit will be designed and integrated for 32 nm technology. The proposed design addresses the four essential parameter optimization, such as power, area, and timing, using the Residual Number System, which is superior to Two's Complement System. According to the findings, there is a 13 percent reduction in power, a 21 % enhancement in area, and a 13 % enhance in throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Systems and Control
WSEAS Transactions on Systems and Control Mathematics-Control and Optimization
CiteScore
1.80
自引率
0.00%
发文量
49
期刊介绍: WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信