非线性初值问题的残差方法

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Adiyaman, B. Noyan
{"title":"非线性初值问题的残差方法","authors":"M. Adiyaman, B. Noyan","doi":"10.22034/CMDE.2020.32830.1527","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlinear system of initial value problems are solved numerically by using Residual method which is based on the minimizing residual function by the Taylor’s series expansion. The convergence analysis of the method is given. The significant feature of the method is reduction of nonlinear system of initial value problems to the system of linear equations. To emphasize the accuracy and potential of the method, we solve Lorenz system and primary HIV-1 infection problem numerically","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Method for Nonlinear System of Initial Value Problems\",\"authors\":\"M. Adiyaman, B. Noyan\",\"doi\":\"10.22034/CMDE.2020.32830.1527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nonlinear system of initial value problems are solved numerically by using Residual method which is based on the minimizing residual function by the Taylor’s series expansion. The convergence analysis of the method is given. The significant feature of the method is reduction of nonlinear system of initial value problems to the system of linear equations. To emphasize the accuracy and potential of the method, we solve Lorenz system and primary HIV-1 infection problem numerically\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.32830.1527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32830.1527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用残差法对非线性系统的初值问题进行了数值求解,该方法基于泰勒级数展开的残差函数最小化。给出了该方法的收敛性分析。该方法的显著特点是将非线性初值问题简化为线性方程组。为了强调该方法的准确性和潜力,我们对Lorenz系统和原发性HIV-1感染问题进行了数值求解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual Method for Nonlinear System of Initial Value Problems
In this paper, the nonlinear system of initial value problems are solved numerically by using Residual method which is based on the minimizing residual function by the Taylor’s series expansion. The convergence analysis of the method is given. The significant feature of the method is reduction of nonlinear system of initial value problems to the system of linear equations. To emphasize the accuracy and potential of the method, we solve Lorenz system and primary HIV-1 infection problem numerically
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信