Haar-$\mathcal I$集:通过紧凑型眼镜观察波兰群体中的小集

IF 1.5 3区 数学 Q1 MATHEMATICS
T. Banakh, Szymon Glkab, Eliza Jablo'nska, J. Swaczyna
{"title":"Haar-$\\mathcal I$集:通过紧凑型眼镜观察波兰群体中的小集","authors":"T. Banakh, Szymon Glkab, Eliza Jablo'nska, J. Swaczyna","doi":"10.4064/dm812-2-2021","DOIUrl":null,"url":null,"abstract":"Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\\mathcal I$ set in a Polish group. Here $\\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\\subset X$ of a Polish group $X$ is called Haar-$\\mathcal I$ if there exists a continuous map $f:K\\to X$ such that $f^{-1}(B+x)\\in\\mathcal I$ for all $x\\in X$. Moreover, $B$ is generically Haar-$\\mathcal I$ if the set of witness functions $\\{f\\in C(K,X):\\forall x\\in X\\;\\;f^{-1}(B+x)\\in\\mathcal I\\}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\\mathcal I$, and construct the corresponding distinguishing examples. Also we establish various Steinhaus properties of the families of (generically) Haar-$\\mathcal I$ sets in Polish groups for various ideals $\\mathcal I$.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Haar-$\\\\mathcal I$ sets: looking at small sets in Polish groups through compact glasses\",\"authors\":\"T. Banakh, Szymon Glkab, Eliza Jablo'nska, J. Swaczyna\",\"doi\":\"10.4064/dm812-2-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\\\\mathcal I$ set in a Polish group. Here $\\\\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\\\\subset X$ of a Polish group $X$ is called Haar-$\\\\mathcal I$ if there exists a continuous map $f:K\\\\to X$ such that $f^{-1}(B+x)\\\\in\\\\mathcal I$ for all $x\\\\in X$. Moreover, $B$ is generically Haar-$\\\\mathcal I$ if the set of witness functions $\\\\{f\\\\in C(K,X):\\\\forall x\\\\in X\\\\;\\\\;f^{-1}(B+x)\\\\in\\\\mathcal I\\\\}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\\\\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\\\\mathcal I$, and construct the corresponding distinguishing examples. Also we establish various Steinhaus properties of the families of (generically) Haar-$\\\\mathcal I$ sets in Polish groups for various ideals $\\\\mathcal I$.\",\"PeriodicalId\":51016,\"journal\":{\"name\":\"Dissertationes Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm812-2-2021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm812-2-2021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

推广了Christensen的Haar空集概念和Darji的Haar贫集概念,引入并研究了波兰群中Haar-$\mathcalI$集的概念。这里$\mathcal I$是某个紧致可度量空间$K$的子集的理想。波兰群$X$的Borel子集$B\子集X$称为Haar-$\mathcal I$,如果存在到X$的连续映射$f:K\,使得对于X$中的所有$X\,$f^{-1}(B+X)\in\mathcal I$。此外,如果C(K,X)中的见证函数$\{f\:\ for all X\ in X\;\;f^{-1}(B+X)\ in \mathcal I\}$的集合在函数空间$C(K,X)$中是comeager,则$B$一般是Haar-$\mathcal I$。我们(一般地)研究了波兰群中许多具体和抽象理想$\mathcal I$的Haar-$\mathical I$集,并构造了相应的区别例子。此外,我们还为各种理想$\mathcalI$建立了波兰群中(一般)Haar-$\mathcal I$集合族的各种Steinhaus性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haar-$\mathcal I$ sets: looking at small sets in Polish groups through compact glasses
Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\mathcal I$ set in a Polish group. Here $\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\subset X$ of a Polish group $X$ is called Haar-$\mathcal I$ if there exists a continuous map $f:K\to X$ such that $f^{-1}(B+x)\in\mathcal I$ for all $x\in X$. Moreover, $B$ is generically Haar-$\mathcal I$ if the set of witness functions $\{f\in C(K,X):\forall x\in X\;\;f^{-1}(B+x)\in\mathcal I\}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\mathcal I$, and construct the corresponding distinguishing examples. Also we establish various Steinhaus properties of the families of (generically) Haar-$\mathcal I$ sets in Polish groups for various ideals $\mathcal I$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信