三次域中的主因子与格极小

IF 0.6 4区 数学 Q3 MATHEMATICS
S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi
{"title":"三次域中的主因子与格极小","authors":"S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi","doi":"10.2206/kyushujm.76.101","DOIUrl":null,"url":null,"abstract":"Let $\\mathit{k}=\\mathbb{Q}(\\sqrt[3]{d},\\zeta_3)$, where $d>1$ is a cube-free positive integer, $\\mathit{k}_0=\\mathbb{Q}(\\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\\zeta_3$, and $G=\\operatorname{Gal}(\\mathit{k}/\\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of \\textit{lattice minima} in the underlying pure cubic subfield $L=\\mathbb{Q}(\\sqrt[3]{d})$ of $\\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\\alpha)\\in\\mathcal{P}_{\\mathit{k}}^G/\\mathcal{P}_{\\mathit{k}_0}$ among the lattice minima $\\Theta=(\\theta_i)_{i\\in\\mathbb{Z}}$ of the underlying pure cubic field $L=\\mathbb{Q}(\\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\\mathit{k}$ by means of Voronoi's algorithm.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PRINCIPAL FACTORS AND LATTICE MINIMA IN CUBIC FIELDS\",\"authors\":\"S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi\",\"doi\":\"10.2206/kyushujm.76.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathit{k}=\\\\mathbb{Q}(\\\\sqrt[3]{d},\\\\zeta_3)$, where $d>1$ is a cube-free positive integer, $\\\\mathit{k}_0=\\\\mathbb{Q}(\\\\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\\\\zeta_3$, and $G=\\\\operatorname{Gal}(\\\\mathit{k}/\\\\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\\\\Theta=(\\\\theta_i)_{i\\\\in\\\\mathbb{Z}}$ of \\\\textit{lattice minima} in the underlying pure cubic subfield $L=\\\\mathbb{Q}(\\\\sqrt[3]{d})$ of $\\\\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\\\\alpha)\\\\in\\\\mathcal{P}_{\\\\mathit{k}}^G/\\\\mathcal{P}_{\\\\mathit{k}_0}$ among the lattice minima $\\\\Theta=(\\\\theta_i)_{i\\\\in\\\\mathbb{Z}}$ of the underlying pure cubic field $L=\\\\mathbb{Q}(\\\\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\\\\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\\\\mathit{k}$ by means of Voronoi's algorithm.\",\"PeriodicalId\":49929,\"journal\":{\"name\":\"Kyushu Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyushu Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$\mathit{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$,其中$d>1$是一个无立方体的正整数,$\mathi{k}_0=\mathbb{Q}(\zeta_3)$是包含单位原始立方根$\zeta_3$的分圆域,$G=\operatorname{Gal}(\mathit{k}/\mathit{k}_0)$。在我们的主要结果[2,Thm.1.1]中$d$的可能素数因子分解引起了关于$\mathit{k}$的底层纯三次子域$L=\mathbb{Q}(\sqrt[3]{d})$中\textit{lattice minimum}的链$\Theta=(\Theta_i)_。本工作的目的是给出原始模糊主理想$(\alpha)\in\mathcal的生成元出现的标准{P}_{\mathit{k}}^G/\mathcal{P}_{\mathit{k}_0}$在底层纯三次域$L=\mathbb{Q}(\sqrt[3]{d})$的格极小值$\Theta=。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRINCIPAL FACTORS AND LATTICE MINIMA IN CUBIC FIELDS
Let $\mathit{k}=\mathbb{Q}(\sqrt[3]{d},\zeta_3)$, where $d>1$ is a cube-free positive integer, $\mathit{k}_0=\mathbb{Q}(\zeta_3)$ be the cyclotomic field containing a primitive cube root of unity $\zeta_3$, and $G=\operatorname{Gal}(\mathit{k}/\mathit{k}_0)$. The possible prime factorizations of $d$ in our main result [2, Thm. 1.1] give rise to new phenomena concerning the chain $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of \textit{lattice minima} in the underlying pure cubic subfield $L=\mathbb{Q}(\sqrt[3]{d})$ of $\mathit{k}$. The aims of the present work are to give criteria for the occurrence of generators of primitive ambiguous principal ideals $(\alpha)\in\mathcal{P}_{\mathit{k}}^G/\mathcal{P}_{\mathit{k}_0}$ among the lattice minima $\Theta=(\theta_i)_{i\in\mathbb{Z}}$ of the underlying pure cubic field $L=\mathbb{Q}(\sqrt[3]{d})$, and to explain exceptional behavior of the chain $\Theta$ for certain radicands $d$ with impact on determining the principal factorization type of $L$ and $\mathit{k}$ by means of Voronoi's algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信