基于高光谱(CHRIS/PROBA)和Sentinel-2多光谱影像的森林群落制图

Q3 Social Sciences
E. Głowienka, N. Zembol
{"title":"基于高光谱(CHRIS/PROBA)和Sentinel-2多光谱影像的森林群落制图","authors":"E. Głowienka, N. Zembol","doi":"10.7494/geom.2022.16.4.103","DOIUrl":null,"url":null,"abstract":"The possibility to use hyperspectral images (CHRIS/PROBA) and multispectral images (Sentinel-2) in the classification of forest communities is assessed in this article. The pre-processing of CHRIS/PROBA image included: noise reduction, radiometric correction, atmospheric correction, geometric correction. Due to MNF transformation the number of the hyperspectral image channels was reduced (to 10 channels) and smiling errors were removed. Sentinel-2 image (level 2A) did not require pre-processing. Three tree genera occurring in the study area were selected for the classification: pine (Pinus), alder (Alnus) and birch (Betula). Image classification was carried out with three methods: SAM (Spectral Angle Mapper ), MTMF (Mixture Tuned Matched Filtering), SVM (Support Vector Machine). For the CHRIS/PROBA image, the algorithm SVM turned out to be the best. Its overall accuracy (OA) was 72%. The poorest result (OA = 52%) was for the MTMF classifier. In the classification of Sentinel-2 multispectral image the best result was for the MTMF method: OA = 82%, kappa coefficient 0.7. For other methods, the overall accuracy exceeded 65%. Among the classified genera, the highest producer’s accuracy was obtained for pine (PA = 96%), and the broad-leaf genera: alder and birch had PA ranging from 42% to 85%.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forest Community Mapping Using Hyperspectral (CHRIS/PROBA) and Sentinel-2 Multispectral Images\",\"authors\":\"E. Głowienka, N. Zembol\",\"doi\":\"10.7494/geom.2022.16.4.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility to use hyperspectral images (CHRIS/PROBA) and multispectral images (Sentinel-2) in the classification of forest communities is assessed in this article. The pre-processing of CHRIS/PROBA image included: noise reduction, radiometric correction, atmospheric correction, geometric correction. Due to MNF transformation the number of the hyperspectral image channels was reduced (to 10 channels) and smiling errors were removed. Sentinel-2 image (level 2A) did not require pre-processing. Three tree genera occurring in the study area were selected for the classification: pine (Pinus), alder (Alnus) and birch (Betula). Image classification was carried out with three methods: SAM (Spectral Angle Mapper ), MTMF (Mixture Tuned Matched Filtering), SVM (Support Vector Machine). For the CHRIS/PROBA image, the algorithm SVM turned out to be the best. Its overall accuracy (OA) was 72%. The poorest result (OA = 52%) was for the MTMF classifier. In the classification of Sentinel-2 multispectral image the best result was for the MTMF method: OA = 82%, kappa coefficient 0.7. For other methods, the overall accuracy exceeded 65%. Among the classified genera, the highest producer’s accuracy was obtained for pine (PA = 96%), and the broad-leaf genera: alder and birch had PA ranging from 42% to 85%.\",\"PeriodicalId\":36672,\"journal\":{\"name\":\"Geomatics and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/geom.2022.16.4.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geom.2022.16.4.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文对利用高光谱影像(CHRIS/PROBA)和多光谱影像(Sentinel-2)进行森林群落分类的可能性进行了评价。CHRIS/PROBA图像的预处理包括:降噪、辐射校正、大气校正、几何校正。通过MNF变换,将高光谱图像的通道数减少到10个,消除了微笑误差。Sentinel-2图像(2A级)不需要预处理。选择研究区内的3个树种进行分类:松(Pinus)、桤木(Alnus)和桦木(Betula)。采用光谱角映射器(SAM)、混合调谐匹配滤波(MTMF)和支持向量机(SVM)三种方法对图像进行分类。对于CHRIS/PROBA图像,SVM算法是最好的。其总体准确率(OA)为72%。结果最差的是MTMF分类器(OA = 52%)。在Sentinel-2多光谱图像分类中,以MTMF方法分类效果最好,OA = 82%, kappa系数0.7。对于其他方法,总体准确率超过65%。在分类属中,松树的生产者识别率最高(PA = 96%),阔叶桤木和桦木的识别率在42% ~ 85%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forest Community Mapping Using Hyperspectral (CHRIS/PROBA) and Sentinel-2 Multispectral Images
The possibility to use hyperspectral images (CHRIS/PROBA) and multispectral images (Sentinel-2) in the classification of forest communities is assessed in this article. The pre-processing of CHRIS/PROBA image included: noise reduction, radiometric correction, atmospheric correction, geometric correction. Due to MNF transformation the number of the hyperspectral image channels was reduced (to 10 channels) and smiling errors were removed. Sentinel-2 image (level 2A) did not require pre-processing. Three tree genera occurring in the study area were selected for the classification: pine (Pinus), alder (Alnus) and birch (Betula). Image classification was carried out with three methods: SAM (Spectral Angle Mapper ), MTMF (Mixture Tuned Matched Filtering), SVM (Support Vector Machine). For the CHRIS/PROBA image, the algorithm SVM turned out to be the best. Its overall accuracy (OA) was 72%. The poorest result (OA = 52%) was for the MTMF classifier. In the classification of Sentinel-2 multispectral image the best result was for the MTMF method: OA = 82%, kappa coefficient 0.7. For other methods, the overall accuracy exceeded 65%. Among the classified genera, the highest producer’s accuracy was obtained for pine (PA = 96%), and the broad-leaf genera: alder and birch had PA ranging from 42% to 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics and Environmental Engineering
Geomatics and Environmental Engineering Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信